Inverted Indexes Compressed Inverted Indexes

- It is possible to combine index compression and text compression without any complication
 - In fact, in all the construction algorithms mentioned, compression can be added as a final step
- In a full-text inverted index, the lists of text positions or file identifiers are in ascending order
 - Therefore, they can be represented as sequences of **gaps** between consecutive numbers
 - Notice that these gaps are small for frequent words and large for infrequent words
 - Thus, compression can be obtained by encoding small values with shorter codes

- A coding scheme for this case is the **unary code**
 - In this method, each integer x > 0 is coded as (x 1) 1-bits followed by a 0-bit
- A better scheme is the Elias- γ code, which represents a number x > 0 by a concatenation of two parts:
 - 1. a unary code for $1 + \lfloor \log_2 x \rfloor$
 - 2. a code of $\lfloor \log_2 x \rfloor$ bits that represents the number $x 2^{\lfloor \log_2 x \rfloor}$ in binary
- Another coding scheme is the Elias- δ code
- Elias- δ concatenates parts (1) and (2) as above, yet part (1) is not represented in unary but using Elias- γ instead

Example codes for integers

Gap x	Unary	Elias- γ	Elias- δ	Golomb
				(<i>b</i> = 3)
1	0	0	0	00
2	10	100	1000	010
3	110	101	1001	011
4	1110	11000	10100	100
5	11110	11001	10101	1010
6	111110	11010	10110	1011
7	1111110	11011	10111	1100
8	11111110	1110000	11000000	11010
9	111111110	1110001	11000001	11011
10	1111111110	1110010	11000010	11100

Note: Golomb codes will be explained later Indexing and Searching, Modern Information Retrieval, Addison Wesley, 2010 - p. 43

In general,

Elias- γ for an arbitrary integer x > 0 requires $1 + 2\lfloor \log_2 x \rfloor$ bits

Elias- δ requires $1 + 2\lfloor \log_2 \log_2 2x \rfloor + \lfloor \log_2 x \rfloor$ bits

- For small values of x Elias- γ codes are shorter than Elias- δ codes, and the situation is reversed as x grows
- Thus the choice depends on which values we expect to encode

- Golomb presented another coding method that can be parametrized to fit smaller or larger gaps
- For some parameter b, let q and r be the quotient and remainder, respectively, of dividing x 1 by b

I.e., $q = \lfloor (x-1)/b \rfloor$ and $r = (x-1) - q \cdot b$

Then x is coded by concatenating

- the unary representation of q+1
- the binary representation of r, using either $\lfloor \log_2 b \rfloor$ or $\lceil \log_2 b \rceil$ bits

- If $r < 2^{\lfloor \log_2 b \rfloor 1}$ then r uses $\lfloor \log_2 b \rfloor$ bits, and the representation always starts with a 0-bit
- Otherwise it uses $\lceil \log_2 b \rceil$ bits where the first bit is 1 and the remaining bits encode the value $r - 2^{\lfloor \log_2 b \rfloor - 1}$ in $\lfloor \log_2 b \rfloor$ binary digits

For example,

- For b = 3 there are three possible remainders, and those are coded as 0, 10, and 11, for r = 0, r = 1, and r = 2, respectively
- For b = 5 there are five possible remainders r, 0 through 4, and these are assigned the codes 00, 01, 100, 101, and 110

- To encode the lists of occurrences using Golomb codes, we must define the parameter *b* for each list
- Golomb codes usually give better compression than either Elias- γ or Elias- δ
 - However they need two passes to be generated as well as information on terms statistics over the whole document collection
 - For example, in the TREC-3 collection, the average number of bits per list entry for each method is
 - Golomb = 5.73
 - Elias- δ = 6.19
 - Elias- γ = 6.43
 - This represents a five-fold reduction in space compared to a plain inverted index representation

- Let us now consider inverted indexes for ranked search
 - In this case the documents are sorted by decreasing frequency of the term or other similar type of weight
- Documents that share the same frequency can be sorted in increasing order of identifiers
- This will permit the use of gap encoding to compress most of each list

Text Compression

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition - p. 94

Text Compression

- A representation of text using less space
- Attractive option to reduce costs associated with
 - space requirements
 - input/output (I/O) overhead
 - communication delays
- Becoming an important issue for IR systems
- *Trade-off:* time to encode versus time to decode text

Text Compression

- Our focus are compression methods that
 - allow random access to text
 - do not require decoding the entire text
- Important: compression and decompression speed
 - In many situations, decompression speed is more important than compression speed
 - For instance, in textual databases in which texts are compressed once and read many times from disk
- Also important: possibility of searching text without decompressing
 - faster because much less text has to be scanned

Compression Methods

Two general approaches

- statistical text compression
- **dictionary** based text compression

Statistical methods

- Estimate the probability of a symbol to appear next in the text
- **Symbol**: a character, a text word, a fixed number of chars
- **Alphabet**: set of all possible symbols in the text
- **Modeling**: task of estimating probabilities of a symbol
- Coding or encoding: process of converting symbols into binary digits using the estimated probabilities

Compression Methods

Dictionary methods

- Identify a set of sequences that can be referenced
- Sequences are often called **phrases**
- Set of phrases is called the **dictionary**
- Phrases in the text are replaced by pointers to dictionary entries

Statistical Methods

- Defined by the combination of two tasks
 - the **modeling task** estimates a probability for each next symbol
 - the coding task encodes the next symbol as a function of the probability assigned to it by the model
- A code establishes the representation (codeword) for each source symbol
 - The entropy E is a **lower bound** on compression, measured in bits per symbol

Statistical Methods

Golden rule

Shorter codewords should be assigned to more frequent symbols to achieve higher compression

- If probability p_c of a symbol c is much higher than others, then $\log_2 \frac{1}{p_c}$ will be small
 - To achieve good compression
 - Modeler must provide good estimation of probability p of symbol occurrences
 - Encoder must assign codewords of length close to $\log_2 \frac{1}{p}$

- Compression models can be
 - **adaptive**, **static**, or **semi-static**
 - character-based or word-based
- Adaptive models:
 - start with no information about the text
 - progressively learn the statistical text distribution
 - need only one pass over the text
 - store no additional information apart from the compressed text
- Adaptive models provide an inadequate alternative for full-text retrieval
 - decompression has to start from the beginning of text

Static models

Static models

- assume an average distribution for all input texts
- modeling phase is done only once for all texts
- achieve poor compression ratios when data deviate from initial statistical assumptions
 - a model that is adequate for English literary texts will probably perform poorly for financial texts

Semi-static models

- Do not assume any distribution on the data
- Learn data distribution (fixed code) in a first pass
- Text compressed in a second pass using fixed code from first pass
- Information on data distribution sent to decoder before transmitting encoded symbols
- Advantage in IR contexts: <u>direct access</u>
 - Same model used at every point in compressed file

- Simple semi-static model: use global frequency information
- Let f_c be the frequency of symbol c in the text $T = t_1 t_2 \dots t_n$

The corresponding entropy is

$$E = \sum_{c \in \Sigma} \frac{f_c}{n} \log_2 \frac{n}{f_c}$$

This simple modeling may not capture the redundancies of the text

In the 2 gigabyte TREC-3 collection:

- Entropy under this simple model: 4.5 bits per character
- Compression ratio cannot be lower than 55%
- But, state-of-the-art compressors achieve compression ratios between 20% and 40%

Order k of a model

- Number of symbols used to estimate probability of next symbol
- Zero-order model: computed independently of context
- Compression improves with higher-order models
 - Model of order 3 in TREC-3 collection
 - compression ratios of 30%
 - handling about 1.3 million frequencies
 - Model of order 4 in TREC-3 collection
 - compression ratio of 25%
 - handling about 6 million frequencies
- In adaptive compression, a higher-order modeler requires much more memory to run

Word-based Modeling

- **Word-based modeling** uses zero-order modeling over a sequence of words
- Good reasons to use word-based models in IR
 - Distribution of words more skewed than that of individual chars
 - Number of different words is not as large as text size
 - Words are the atoms on which most IR systems are built
 - Word frequencies are useful in answering queries

Word-based Modeling

- Two different alphabets can be used
 - one for words
 - one for separators
- In TREC-3, 70% 80% of separators are spaces
- Good properties of word-based models stem from well-known statistical rules:
 - Heaps' law: $V = O(n^{\beta})$,

Zipf's law: the *i*-th most frequent word occurs $O(n/i^{\alpha})$ times

- Codeword: representation of a symbol according to a model
 - **Encoders:** generate the codeword of a symbol (coding)
 - assign short codewords to frequent symbols
 - assign long codewords to infrequent ones
 - entropy of probability distribution is lower bound on average length of a codeword
 - **Decoders:** obtain the symbol corresponding to a codeword (decoding)
 - Speed of encoder and decoder is important

- Symbol code: an assignment of a codeword to each symbol
- The least we can expect from a code is that it be uniquely decodable
- Consider three source symbols A, B, and C
 - Symbol code: $A \rightarrow 0, B \rightarrow 1, C \rightarrow 01$
 - Then, compressed text 011 corresponds to ABB or CB?

Consider again the three source symbols *A*, *B*, and *C*

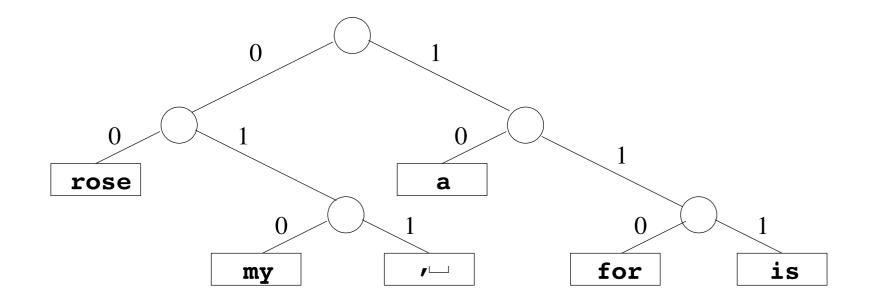
- Symbol code: $A \rightarrow 00, B \rightarrow 11, C \rightarrow 110$
- This symbol code is uniquely decodable
- However, for the compressed text 11000000
 - we must count total number of zeros to determine whether first symbol is B or C
- A code is said to be instantaneous if every codeword can be decoded immediately after reading its last bit
- Prefix-free or prefix codes: no codeword should be a prefix of another

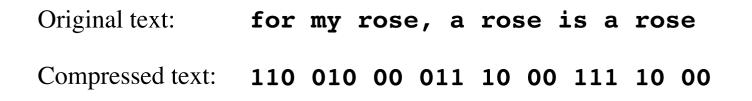
Huffman coding

- a method to find the best prefix code for a probability distribution
- Let $\{p_c\}$ be a set of probabilities for the symbols $c \in \Sigma$
 - Huffman method assigns to each c a codeword of length ℓ_c
 - Idea: minimize $\sum_{c \in \Sigma} p_c \cdot \ell_c$
- In a first pass, the modeler of a semi-static Huffman-based compression method:
 - determines the probability distribution of the symbols
 - builds a coding tree according to this distribution
- In a second pass, each text symbol is encoded according to the coding tree

Huffman Codes

Figure below presents an example of Huffman compression



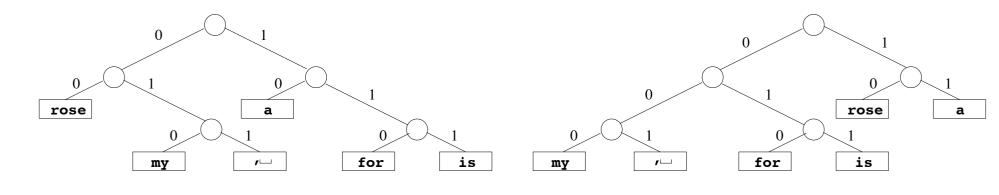


Huffman Codes

- Given V symbols and their frequencies in the text, the algorithm builds the Huffman tree in $O(V \log V)$ time
- Decompression is accomplished as follows
 - Stream of bits in file is traversed from left to right
 - Sequence of bits read is used to also traverse the Huffman coding tree, starting at the root
 - Whenever a leaf node is reached, the corresponding word or separator is printed out and the tree traversal is restarted
- In our example, the presence of the codeword 110 in the compressed file leads to the symbol for

Huffman Codes

The Huffman tree for a given probability distribution is not unique



Original text:	for	my	rose	e, a	ros	se :	is a	a ro	ose	
Compressed text:	110	010	00	011	10	00	111	L 10	00)

Original text:	for	my	rose	, a	ros	se :	is a	a	ros	se	
Compressed text:	010	000) 10	001	11	10	01	1	11	10	

Canonical tree

- right subtree of no node can be taller than its left subtree
- can be stored very efficiently
- allows faster decoding

- Original Huffman method leads to binary coding trees
- However, we can make the code assign a sequence of whole bytes to each symbol
 - As a result, Huffman tree has degree 256 instead of 2
 - This word-based model degrades compression ratios to around 30%
 - In exchange, decompression of byte-Huffman code is much faster than for binary Huffman code

- In byte-Huffman coding, direct searching on compressed text is simpler
 - To search for a word in the compressed text
 - first find it in the vocabulary
 - for TREC-3, vocabulary requires just 5 megabytes
 - mark the corresponding leaf in the tree
 - proceed over text as if decompressing, except that no symbol is output
 - instead, report occurrences when visiting marked leaves

- Process is simple and fast: only 30% of the I/O is necessary
- Assume we wish to search for a complex pattern including ranges of characters or a regular expression
 - just apply the algorithm over the vocabulary
 - for each match of a whole vocabulary word, mark the word
 - done only on the vocabulary (much smaller than whole text)
 - once relevant words are marked, run simple byte-scanning algorithm over the compressed text

- All complexity of the search is encapsulated in the vocabulary scanning
- For this reason, searching the compressed text is
 - up to 8 times faster when complex patterns are involved
 - about 3 times faster when simple patterns are involved

- Although the search technique is simple and uniform, one could do better especially for single-word queries
- Concatenation of two codewords might contain a third codeword
 - Consider the code: $A \rightarrow 0$, $B \rightarrow 10$, $C \rightarrow 110$, $D \rightarrow 111$
 - *DB* would be coded as 11110
 - If we search for C, we would incorrectly report a spurious occurrence spanning the codewords of DB
 - To check if the occurrence is spurious or not, rescan all text from the beginning

- An alternative coding simpler than byte-Huffman is dense coding
- Dense codes arrange the symbols in decreasing frequency order
 - Codeword assigned to the *i*-th most frequent symbol is, essentially, the number i 1
 - number is written in a variable length sequence of bytes
 - 7 bits of each byte are used to encode the number
 - highest bit is reserved to signal the last byte of the codeword

Codewords of symbols ranked 1 to 128 are 0 to 127

- they receive one-byte codewords
- highest bit is set to 1 to indicate last byte (that is, we add 128 to all codewords)
- symbol ranked 1 receives codeword $\langle 128 \rangle = \langle 0 + 128 \rangle$
- symbol ranked 2 receives codeword $\langle 129 \rangle = \langle 1 + 128 \rangle$
- symbol ranked 128 receives codeword $\langle 255 \rangle$
- Symbols ranked from 129 to 16,512 (i.e., $128 + 128^2$) are assigned two-byte codewords $\langle 0, 128 \rangle$ to $\langle 127, 255 \rangle$

Stoppers

- these are those bytes with their highest bit set
- they indicate the end of the codeword

Continuers

- these are the bytes other than stoppers
- Text vocabularies are rarely large enough to require 4-byte codewords

Figure below illustrates an encoding with dense codes

Word rank	Codeword	Bytes	# of words
1	$\langle 128 \rangle$	1	
2	$\langle 129 \rangle$	1	100
 128	$\langle 255 \rangle$	1	128
129	$\langle 0, 128 \rangle$	2	
130	$\langle 0, 129 angle$	2	
 256	$\langle 0, 255 angle$	2	
257	$\langle 1, 128 \rangle$	2	128^{2}
 16,512	$\langle 127, 255 \rangle$	2	
16,513	$\langle 0, 0, 128 angle$	3	1002
 2,113,664	$\overset{\dots}{\langle 127,127,255 \rangle}$	3	128^{3}

Highest bit signals the end of a codeword

a dense code is automatically a prefix code

Self-synchronization

- Dense codes are self-synchronizing
 - Given any position in the compressed text, it is very easy to determine the next or previous codeword beginning
 - decompression can start from any position, be it a codeword beginning or not

Huffman-encoding is not self-synchronizing

- not possible to decode starting from an arbitrary position in the compressed text
- notice that it is possible to decode starting at an *arbitrary* codeword beginning

- Self-synchronization allows faster search
 - To search for a single word we can
 - obtain its codeword
 - search for the codeword in the compressed text using any string matching algorithm
 - This does not work over byte-Huffman coding

- An *spurious occurrence* is a codeword that is a suffix of another codeword
 - assume we look for codeword a b c, where we have overlined the stopper byte
 - Ithere could be a codeword d a b c in the code, so that we could find our codeword in the text . . . e f g d a b c . . .
 - yet, it is sufficient to access the text position preceding the candidate occurrence, 'd', to see that it is not a stopper
- Such a fast and simple check is not possible with Huffman coding
 - To search for phrases
 - concatenate the codewords
 - search for the concatenation