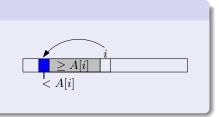
New Solution

Definition (Previous Smaller Values)

For array index *i* in *A*, let

$$PSV(i) = \operatorname{argmax}\{k < i : A[k] < A[i]\}$$

be the previous smaller value left of *i*.



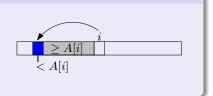
New Solution

Definition (Previous Smaller Values)

For array index *i* in *A*, let

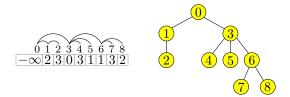
$$PSV(i) = \operatorname{argmax}\{k < i : A[k] < A[i]\}$$

be the previous smaller value left of *i*.

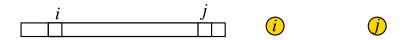


Definition (2d-Min-Heap of array A)

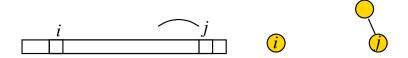
Ordered Tree on nodes [1, n] defined by parent(i) = PSV(i).



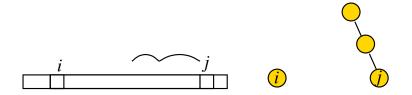
Lemma



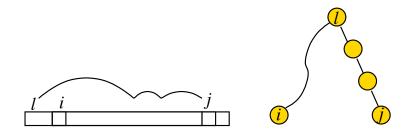
Lemma



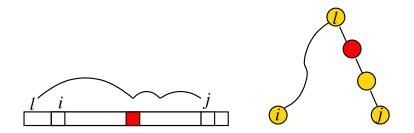
Lemma



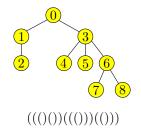
Lemma



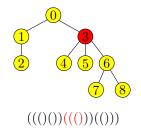
Lemma



- Represent heap succinctly by DFUDS:
 - list degrees of nodes in pre-order:
 - node of out-degree $k \Rightarrow (^k)$
 - \Rightarrow space 2*n* bits
 - \Rightarrow array-index *i* corresponds to *i*'th ')'



- Represent heap succinctly by DFUDS:
 - list degrees of nodes in pre-order:
 - node of out-degree $k \Rightarrow (^k)$
 - \Rightarrow space 2*n* bits
 - \Rightarrow array-index *i* corresponds to *i*'th ')'



- Represent heap succinctly by DFUDS:
 - list degrees of nodes in pre-order:
 - node of out-degree $k \Rightarrow (^k)$
 - \Rightarrow space 2*n* bits
 - \Rightarrow array-index *i* corresponds to *i*'th ')'
- \$\mathcal{O}(\frac{n \log \log n}{\log n})\$-bit index for simulating \$\mathcal{O}(1)\$-LCAs (technical!)
- DFUDS can be constructed "in-place"

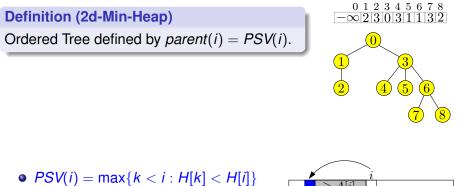
	0	
1	3	
2	456	
	7	8
((()	()) <mark>((()</mark>))(()))

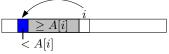
- Represent heap succinctly by DFUDS:
 - list degrees of nodes in pre-order:
 - node of out-degree $k \Rightarrow (^k)$
 - \Rightarrow space 2*n* bits
 - \Rightarrow array-index *i* corresponds to *i*'th ')'
- \$\mathcal{O}(\frac{n \log \log n}{\log n})\$-bit index for simulating \$\mathcal{O}(1)\$-LCAs (technical!)
- DFUDS can be constructed "in-place"

/	0	
1	3	
(2)	(4)(5)(6)	
Ŭ	7 8)
((()	())((()))(()))	

Theorem

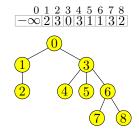
There is a preprocessing scheme of optimal size 2n + o(n) bits for O(1)-range minimum queries. Workspace is also O(n) bits.



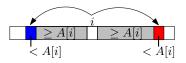


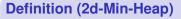
 \Rightarrow PSV simple (move to parent in $\mathcal{O}(1)$ time!)

Ordered Tree defined by parent(i) = PSV(i).

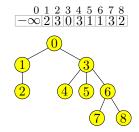


PSV(*i*) = max{*k* < *i* : *H*[*k*] < *H*[*i*]}
NSV(*i*) = min{*k* > *i* : *H*[*k*] < *H*[*i*]}

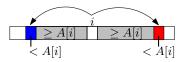




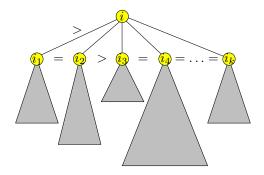
Ordered Tree defined by parent(i) = PSV(i).

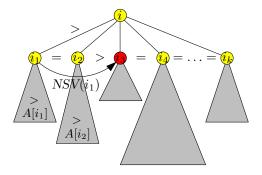


PSV(*i*) = max{*k* < *i* : *H*[*k*] < *H*[*i*]}
NSV(*i*) = min{*k* > *i* : *H*[*k*] < *H*[*i*]}

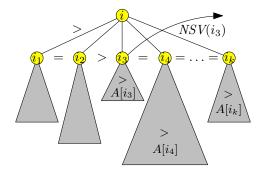


Can we also do NSV???

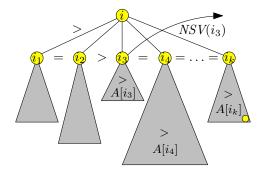




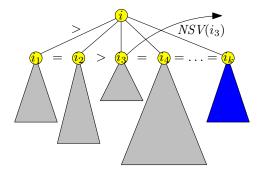
Find leftmost <-sibling to the right</p>



- Find leftmost <-sibling to the right</p>
- If it does not exist...



- Find leftmost <-sibling to the right</p>
- If it does not exist...



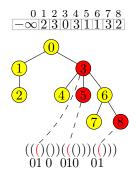
- Find leftmost <-sibling to the right</p>
- If it does not exist...

• Distinguish =- and <-siblings?

- → Mark <-children in additional bit-vector
 - Bit-tricks for $\mathcal{O}(1)$ -computations

Theorem (Extended 2d-Min-Heap)

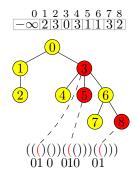
3n + o(n) bits suffice to support RMQ, PSV and NSVs in O(1) time.



• Distinguish =- and <-siblings?

- → Mark <-children in additional bit-vector
 - Bit-tricks for $\mathcal{O}(1)$ -computations

Theorem (Extended 2d-Min-Heap) 3n + o(n) bits suffice to support RMQ, PSV and NSVs in O(1) time.



- Not necessarily optimal...
- $\ldots \leq 2.54 \ldots n$ possible (Schröder Tree!)