
New Solution
Definition (Previous Smaller Values)
For array index i in A, let

PSV(i) = argmax{k < i : A[k ] < A[i]}

be the previous smaller value left of i .

i

� A[i]

< A[i]

Definition (2d-Min-Heap of array A)
Ordered Tree on nodes [1, n] defined by parent(i) = PSV(i).
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Relating 2d-Min-Heaps with RMQs

Lemma
RMQ(i , j) is given by the child of LCA(i , j) that is on the path to j.

ji
ji
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Representation and Construction of 2d-Min-Heaps

Represent heap succinctly by DFUDS:
I list degrees of nodes in pre-order:
I node of out-degree k ) (k )
) space 2n bits
) array-index i corresponds to i ’th ’)’

O(n log log n
log n )-bit index for simulating

O(1)-LCAs (technical!)
DFUDS can be constructed “in-place”
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7 8

((()())((()))(()))

Theorem
There is a preprocessing scheme of optimal size 2n + o(n) bits for
O(1)-range minimum queries. Workspace is also O(n) bits.
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More Functionality: PSV

Definition (2d-Min-Heap)
Ordered Tree defined by parent(i) = PSV(i). 0
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PSV(i) = max{k < i : H[k ] < H[i]}

NSV(i) = min{k > i : H[k ] < H[i]}

i

� A[i]

< A[i]

) PSV simple (move to parent in O(1) time!)
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Can we also do NSV???
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More Functionality: NSV

i

i2i1 i3 i4 ik

>

>= = = . . . =

1 Find leftmost <-sibling to the right
2 If it does not exist. . .
3 . . . NSV(i3) = ik + |Tik |
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More Functionality: NSV

Distinguish =- and <-siblings?
 Mark <-children in additional bit-vector

Bit-tricks for O(1)-computations

Theorem (Extended 2d-Min-Heap)
3n + o(n) bits suffice to support RMQ, PSV
and NSVs in O(1) time.
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Not necessarily optimal. . .
. . . 2.54 . . . n possible (Schröder Tree!)
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