
New Solution
Definition (Previous Smaller Values)
For array index i in A, let

PSV(i) = argmax{k < i : A[k] < A[i]}

be the previous smaller value left of i .

i

� A[i]

< A[i]

Definition (2d-Min-Heap of array A)
Ordered Tree on nodes [1, n] defined by parent(i) = PSV(i).

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 17 / 29

New Solution
Definition (Previous Smaller Values)
For array index i in A, let

PSV(i) = argmax{k < i : A[k] < A[i]}

be the previous smaller value left of i .

i

� A[i]

< A[i]

Definition (2d-Min-Heap of array A)
Ordered Tree on nodes [1, n] defined by parent(i) = PSV(i).

0

1

2

3

4 5 6

7 8

�1 2 3 0 3 1 1 3 2
0 1 2 3 4 5 6 7 8

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 17 / 29

Relating 2d-Min-Heaps with RMQs

Lemma
RMQ(i , j) is given by the child of LCA(i , j) that is on the path to j.

ji
ji

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 18 / 29

Relating 2d-Min-Heaps with RMQs

Lemma
RMQ(i , j) is given by the child of LCA(i , j) that is on the path to j.

ji
i j

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 18 / 29

Relating 2d-Min-Heaps with RMQs

Lemma
RMQ(i , j) is given by the child of LCA(i , j) that is on the path to j.

ji
i j

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 18 / 29

Relating 2d-Min-Heaps with RMQs

Lemma
RMQ(i , j) is given by the child of LCA(i , j) that is on the path to j.

j

l

l i
ji

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 18 / 29

Relating 2d-Min-Heaps with RMQs

Lemma
RMQ(i , j) is given by the child of LCA(i , j) that is on the path to j.

j

l

l i
i j

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 18 / 29

Representation and Construction of 2d-Min-Heaps

Represent heap succinctly by DFUDS:
I list degrees of nodes in pre-order:
I node of out-degree k) (k)
) space 2n bits
) array-index i corresponds to i ’th ’)’

O(n log log n
log n)-bit index for simulating

O(1)-LCAs (technical!)
DFUDS can be constructed “in-place”

0

1

2

3

4 5 6

7 8

((()())((()))(()))

Theorem
There is a preprocessing scheme of optimal size 2n + o(n) bits for
O(1)-range minimum queries. Workspace is also O(n) bits.

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 19 / 29

Representation and Construction of 2d-Min-Heaps

Represent heap succinctly by DFUDS:
I list degrees of nodes in pre-order:
I node of out-degree k) (k)
) space 2n bits
) array-index i corresponds to i ’th ’)’

O(n log log n
log n)-bit index for simulating

O(1)-LCAs (technical!)
DFUDS can be constructed “in-place”

0

1

2

3

4 5 6

7 8

((()())((()))(()))

Theorem
There is a preprocessing scheme of optimal size 2n + o(n) bits for
O(1)-range minimum queries. Workspace is also O(n) bits.

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 19 / 29

Representation and Construction of 2d-Min-Heaps

Represent heap succinctly by DFUDS:
I list degrees of nodes in pre-order:
I node of out-degree k) (k)
) space 2n bits
) array-index i corresponds to i ’th ’)’

O(n log log n
log n)-bit index for simulating

O(1)-LCAs (technical!)
DFUDS can be constructed “in-place”

0

1

2

3

4 5 6

7 8

((()())((()))(()))

Theorem
There is a preprocessing scheme of optimal size 2n + o(n) bits for
O(1)-range minimum queries. Workspace is also O(n) bits.

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 19 / 29

Representation and Construction of 2d-Min-Heaps

Represent heap succinctly by DFUDS:
I list degrees of nodes in pre-order:
I node of out-degree k) (k)
) space 2n bits
) array-index i corresponds to i ’th ’)’

O(n log log n
log n)-bit index for simulating

O(1)-LCAs (technical!)
DFUDS can be constructed “in-place”

0

1

2

3

4 5 6

7 8

((()())((()))(()))

Theorem
There is a preprocessing scheme of optimal size 2n + o(n) bits for
O(1)-range minimum queries. Workspace is also O(n) bits.

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 19 / 29

More Functionality: PSV

Definition (2d-Min-Heap)
Ordered Tree defined by parent(i) = PSV(i). 0

1

2

3

4 5 6

7 8

�1 2 3 0 3 1 1 3 2
0 1 2 3 4 5 6 7 8

PSV(i) = max{k < i : H[k] < H[i]}

NSV(i) = min{k > i : H[k] < H[i]}

i

� A[i]

< A[i]

) PSV simple (move to parent in O(1) time!)

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 20 / 29

More Functionality: PSV

Definition (2d-Min-Heap)
Ordered Tree defined by parent(i) = PSV(i). 0

1

2

3

4 5 6

7 8

�1 2 3 0 3 1 1 3 2
0 1 2 3 4 5 6 7 8

PSV(i) = max{k < i : H[k] < H[i]}
NSV(i) = min{k > i : H[k] < H[i]}

i

� A[i]

< A[i]

� A[i]

< A[i]

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 20 / 29

More Functionality: PSV

Definition (2d-Min-Heap)
Ordered Tree defined by parent(i) = PSV(i). 0

1

2

3

4 5 6

7 8

�1 2 3 0 3 1 1 3 2
0 1 2 3 4 5 6 7 8

PSV(i) = max{k < i : H[k] < H[i]}
NSV(i) = min{k > i : H[k] < H[i]}

i

� A[i]

< A[i]

� A[i]

< A[i]

Can we also do NSV???

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 20 / 29

More Functionality: NSV

i

i2i1 i3 i4 ik

>

>= = = . . . =

1 Find leftmost <-sibling to the right
2 If it does not exist. . .
3 . . . NSV(i3) = ik + |Tik |

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 21 / 29

More Functionality: NSV

= . . . =

i

i2i1 i3 i4 ik

>

>= =

NSV(i1)

A[i1]

A[i2]
>

>

1 Find leftmost <-sibling to the right

2 If it does not exist. . .
3 . . . NSV(i3) = ik + |Tik |

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 21 / 29

More Functionality: NSV

i

i2i1 i3 i4 ik

>

>= =

NSV(i3)

= . . . =

A[i3]
>

>

>

A[i4]

A[ik]

1 Find leftmost <-sibling to the right
2 If it does not exist. . .

3 . . . NSV(i3) = ik + |Tik |

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 21 / 29

More Functionality: NSV

i

i2i1 i3 i4 ik

>

>= =

NSV(i3)

= . . . =

A[i3]
>

>

>

A[i4]

A[ik]

1 Find leftmost <-sibling to the right
2 If it does not exist. . .

3 . . . NSV(i3) = ik + |Tik |

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 21 / 29

More Functionality: NSV

i

i2i1 i3 i4 ik

>

>= =

NSV(i3)

= . . . =

1 Find leftmost <-sibling to the right
2 If it does not exist. . .
3 . . . NSV(i3) = ik + |Tik |

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 21 / 29

More Functionality: NSV

Distinguish =- and <-siblings?
 Mark <-children in additional bit-vector

Bit-tricks for O(1)-computations

Theorem (Extended 2d-Min-Heap)
3n + o(n) bits suffice to support RMQ, PSV
and NSVs in O(1) time.

0

1

2

3

4 5 6

7 8

�1 2 3 0 3 1 1 3 2
0 1 2 3 4 5 6 7 8

((()())((()))(()))
01 0 010 01

Not necessarily optimal. . .
. . . 2.54 . . . n possible (Schröder Tree!)

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 22 / 29

More Functionality: NSV

Distinguish =- and <-siblings?
 Mark <-children in additional bit-vector

Bit-tricks for O(1)-computations

Theorem (Extended 2d-Min-Heap)
3n + o(n) bits suffice to support RMQ, PSV
and NSVs in O(1) time.

0

1

2

3

4 5 6

7 8

�1 2 3 0 3 1 1 3 2
0 1 2 3 4 5 6 7 8

((()())((()))(()))
01 0 010 01

Not necessarily optimal. . .
. . . 2.54 . . . n possible (Schröder Tree!)

Johannes Fischer (KIT) Two-Dimensional Min-Heaps May 2010 22 / 29

