
Skriptum VL Text-Indexierung
Sommersemester 2010

Johannes Fischer (KIT)

1 Recommended Reading

• D. Gusfield: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.

• M. Crochemore, W. Rytter, Jewels of Stringology. World Scientific, 2002.

• M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings. Cambridge UP, 2007.

• D. Adjeroh, T. Bell, and A. Mukherjee: The Burrows-Wheeler Transform: Data Compression,
Suffix Arrays and Pattern Matching. Springer, 2008.

2 Suffix Trees and Arrays

2.1 Suffix Trees

In this section we will introduce suffix trees, which, among many other things, can be used to solve
the string matching task (find pattern P of length m in a text T of length n in O(n+m) time). In
the exercises, we have already seen that other methods (Boyer-Moore, e.g.) solve this task in the
same time. So why do we need suffix trees?

The advantage of suffix trees over the other string-matching algorithms (Boyer-Moore, KMP,
etc.) is that suffix trees are an index of the text. So, if T is static and there are several patterns
to be matched against T , the O(n)-task for building the index needs to be done only once, and
subsequent matching-tasks can be done in O(m) time. If m << n, this is a clear advantage over the
other algorithms.

Throughout this section, let T = t1t2 . . . tn be a text over an alphabet Σ of size |Σ| =: σ.

Definition 1. A compact Σ+-tree is a rooted tree S = (V,E) with edge labels from Σ+ that fulfills
the following two constraints:

• ∀v ∈ V : all outgoing edges from v start with a different a ∈ Σ.

• Apart from the root, all nodes have out-degree 6= 1.

Definition 2. Let S = (V,E) be a compact Σ+-tree.

• For v ∈ V , v denotes the concatenation of all path labels from the root of S to v.

• |v| is called the string-depth of v and is denoted by d(v).

• S is said to display α ∈ Σ∗ iff ∃v ∈ V, β ∈ Σ∗ : v = αβ.

• If v = α for v ∈ V, α ∈ Σ∗, we also write α to denote v.

• words(S) denotes all strings in Σ∗ that are displayed by S: words(S) = {α ∈ Σ∗ : S displays α}

• For i ∈ {1, 2, . . . , n}, titi+1 . . . tn is called the i-th suffix of T and is denoted by Ti...n. In
general, we use the notation Ti...j as an abbreviation of titi+1 . . . tj.

1

We are now ready to define suffix trees.

Definition 3. Let factor(T) denote the set of all factors of T , factor(T) = {Ti...j : 1 ≤ i ≤ j ≤ n}.
The suffix tree of T is a compact Σ+-tree S with words(S) = factor(T).

For several reasons, we shall find it useful that each suffix ends in a leaf of S. This can be
accomplished by adding a new character $ 6∈ Σ to the end of T , and build the suffix tree over T$.

From now on, we assume that T terminates with a $, and we define $ to be lexicographically
smaller than all other characters in Σ: $ < a for all a ∈ Σ. This gives a one-to-one correspondence
between T ’s suffixes and the leaves of S, which implies that we can label the leaves with a function
l by the start index of the suffix they represent: l(v) = i ⇐⇒ v = Ti...n. This also explains the
name “suffix tree.”

Remark : The outgoing edges at internal nodes v of the suffix tree can be implemented in two
fundamentally different ways:

1. as arrays of size σ

2. as arrays of size sv, where sv denotes the number of v’s children

Approach (1) has the advantage that the outgoing edge whose edge label starts with α ∈ Σ
can be located in O(1) time, but the complete suffix tree uses space O(nσ), which can be as bad
as O(n2). Hence, we assume that approach (2) is used, which implies that locating the correct
outgoing edge takes O(log σ) time (using binary search). Note that the space consumption of
approach (2) is always O(n), independent of σ.

2.2 Searching in Suffix Trees

Let P be a pattern of length m. Throughout the whole lecture, we will be concerned with the two
following problems:

Problem 1. Counting: Return the number of matches of P in T . Formally, return the size of
OP = {i ∈ [1, n] : Ti...i+m−1 = P}

Problem 2. Reporting: Return all occurrences of P in T , i. e., return the set OP .

With suffix trees, the counting-problem can be solved in O(m log σ) time: traverse the tree from
the root downwards, in each step locating the correct outgoing edge, until P has been scanned
completely. More formally, suppose that P1...i−1 have already been parsed for some 1 ≤ i < m,
and our position in the suffix tree S is at node v (v = P1...i−1). We then find v’s outgoing edge e
whose label starts with Pi. This takes O(log σ) time. We then compare the label of e character-by-
character with Pi...m, until we have read all of P (i = m), or until we have reached position j ≥ i
for which P1...j is a node v′ in S, in which case we continue the procedure at v′. This takes a total
of O(m log σ) time. Suppose the search procedure has brought us successfully to a node v, or to
the incoming edge of node v. We then output the size of Sv, the subtree of S rooted at v. This can
be done in constant time, assuming that we have labeled all nodes in S with their subtree sizes.
This answers the counting query. For the reporting query, we output the labels of all leaves in Sv
(recall that the leaves are labeled with text positions).

Theorem 1. The suffix tree allows to answer counting queries in O(m log σ) time, and reporting
queries in O(m log σ + |OP |) time.

2

An important implementation detail is that the edge labels in a suffix tree are represented by
a pair (i, j), 1 ≤ i ≤ j ≤ n, such that Ti...j is equal to the corresponding edge label. This ensures
that an edge label uses only a constant amount of memory.

From this implementation detail and the fact that S contains exactly n leaves and hence less
than n internal nodes, we can formulate the following theorem:

Theorem 2. A suffix tree occupies O(n) space in memory.

2.3 Suffix- and LCP-Arrays

We will now introduce two arrays that are closely related to the suffix tree, the suffix array A and
the LCP-array H.

Definition 4. The suffix array A of T is a permutation of {1, 2, . . . , n} such that A[i] is the i-th
smallest suffix in lexicographic order: TA[i−1]...n < TA[i]...n for all 1 < i ≤ n.

The following observation relates the suffix array A with the suffix tree S.

Observation 1. If we do a lexicographically-driven depth-first search through S (visit the children
in lexicographic order of the first character of their corresponding edge-label), then the leaf-labels
seen in this order give the suffix-array A.

The second array H builds on the suffix array:

Definition 5. The LCP-array H of T is defined such that H[1] = 0, and for all i > 1, H[i] holds
the length of the longest common prefix of TA[i]...n and TA[i−1]...n.

To relate the LCP-array H with the suffix tree S, we need to define the concept of lowest
common ancestors:

Definition 6. Given a tree S = (V,E) and two nodes v, w ∈ V , the lowest common ancestor of
v and w is the deepest node in S that is an ancestor of both v and w. This node is denoted by
lca(v, w).

Observation 2. The string-depth of the lowest common ancestor of the leaves labeled A[i] and
A[i − 1] is given by the corresponding entry H[i] of the LCP-array, in symbols: ∀i > 1 : H[i] =
d(lca(TA[i]...n, TA[i−1]...n)).

2.4 Searching in Suffix Arrays

We can use a plain suffix array A to search for a pattern P , using the ideas of binary search, since
the suffixes in A are sorted lexicographically and hence the occurrences of P in T form an interval
in A. The algorithm below performs two binary searches. The first search locates the starting
position s of P ’s interval in A, and the second search determines the end position r. A counting
query returns r − s+ 1, and a reporting query returns the numbers A[s], A[s+ 1], . . . , A[r].

Note that both while-loops in Alg. 1 make sure that either l is increased or r is decreased, so they
are both guaranteed to terminate. In fact, in the first while-loop, r always points one position behind
the current search interval, and r is decreased in case of equality (when P = TA[q]...min{A[q]+m−1,n}).
This makes sure that the first while-loop finds the leftmost position of P in A. The second loop
works symmetrically.

Theorem 3. The suffix array allows to answer counting queries in O(m log n) time, and reporting
queries in O(m log n+ |OP |) time.

3

Algorithm 1: function SAsearch(P1...m)

l← 1; r ← n+ 1;
while l < r do

q ← b l+r2 c;
if P >lex TA[q]...min{A[q]+m−1,n} then

l← q + 1;
else

r ← q;
end

end
s← l; l−−; r ← n;
while l < r do

q ← d l+r2 e;
if P =lex TA[q]...min{A[q]+m−1,n} then

l← q;
else

r ← q − 1;
end

end
return [s, r];

2.5 Construction of Suffix Trees from Suffix- and LCP-Arrays

Assume for now that we are given T , A, and H, and we wish to construct S, the suffix tree of T .
We will show in this section how to do this in O(n) time. Later, we will also see how to construct
A and H only from T in linear time. In total, this will give us an O(n)-time construction algorithm
for suffix trees.

The idea of the algorithm is to insert the suffixes into S in the order of the suffix array:
TA[1]...n, TA[2]...n, . . . , TA[n]...n. To this end, let Si denote the partial suffix tree for 0 ≤ i ≤ n (Si is
the compact Σ+-tree with words(Si) = {TA[k]...j : 1 ≤ k ≤ i, A[k] ≤ j ≤ n}). In the end, we will
have S = Sn.

We start with S0, the tree consisting only of the root (and thus displaying only ε). In step i+1,
we climb up the rightmost path of Si (i.e., the path from the leaf labeled A[i] to the root) until we
meet the deepest node v with d(v) ≤ H[i+ 1]. If d(v) = H[i+ 1], we simply insert a new leaf x to
Si as a child of v, and label (v, x) by TA[i+1]+H[i+1]...n. Leaf x is labeled by A[i+ 1]. This gives us
Si+1.

Otherwise (i.e., d(v) < H[i + 1]), let w be the child of v on Si’s rightmost path. In order to
obtain Si+1, we split up the edge (v, w) as follows.

1. Delete (v, w).

2. Add a new node y and a new edge (v, y). (v, y) gets labeled by TA[i]+d(v)...A[i]+H[i+1]−1.

3. Add (y, w) and label it by TA[i]+H[i+1]...A[i]+d(w)−1.

4. Add a new leaf x (labeled A[i+ 1]) and an edge (y, x). Label (y, x) by TA[i+1]+H[i+1]...n.

4

The correctness of this algorithm follows from observations 1 and 2 above. Let us now consider
the execution time of this algorithm. Although climbing up the rightmost path could take O(n)
time in a single step, a simple amortized argument shows that the running time of this algorithm
can be bounded by O(n) in total: each node traversed in step i (apart from the last) is removed
from the rightmost path and will not be traversed again for all subsequent steps j > i. Hence, at
most 2n nodes are traversed in total.

Theorem 4. We can construct T ’s suffix tree in linear time from T ’s suffix- and LCP-array.

2.6 Linear-Time Construction of Suffix Arrays

For an easier presentation, we assume in this section that T is index from 0 to n−1, T = t0t1 . . . tn−1.

Definition 7. If x mod y = z, we write x ≡ z(mod y) or simply x ≡ z(y).

Our general approach will be recursive: first construct the suffix array A12 for the suffixes Ti...n
with i 6≡ 0(3) by a recursive call to the suffix sorting routine. From this, derive the suffix array A0

for the suffixes Ti...n with i ≡ 0(3). Then merge A12 and A0 to obtain the final suffix array.

2.6.1 Creation of A12 by Recursion

In order to call the suffix sorting routine recursively, we need to construct a new text T ′ from
whose suffix array A′ we can derive A12. To this end, we look at all character triplets titi+1ti+2

with i 6≡ 0(3), and sort the resulting set of triplets S = {titi+1ti+2 : i 6≡ 0(3)} with a bucket-sort in
O(n) time. (To have all triplets well-defined, we pad T with sufficiently many $’s at the end.)

We define T ′ as follows: its first half consists of the bucket-numbers of titi+1ti+2 for increasing
i ≡ 1(3), and its second half consists of the same for the triplets with i ≡ 2(3).

We now build the suffix array A′ for T ′ by a recursive call (stop the recursion if |T ′| = O(1)).
This already gives us sorting of the suffixes starting at positions i 6≡ 0(3), because of the following:

• The suffixes starting at i ≡ 2(3) in T have a one-to-one correspondence to the suffixes in T ′

and are hence in correct lexicographic order.

• The suffixes starting at i ≡ 1(3) in T are longer than they should be (because of the bucket
numbers of the triplets starting at 2(3)), but due to the $’s in the middle of T ′ this “tail”
does not influence the result.

Thus, all that remains to be done is to convert the indices in T ′ to indices in T , which is done
as follows:

A12[i] =

{
1 + 3A′[i] if A′[i] < d |T ′|2 e
2 + 3(A′[i]− d |T ′|2 e) otherwise

2.6.2 Creation of A0

The following lemma follows immediately from the definition of A12.

Lemma 5. Let i, j ≡ 0(3). Then Ti...n < Tj...n iff ti < tj, or ti = tj and i+ 1 appears before j + 1
in A12.

This suggests the following strategy to construct A0:

5

1. Initialize A0 with all numbers 0 ≤ i < n for which i ≡ 0(3).

2. Bucket-sort A0, where A0[i] has sort-key tA0[i].

3. In a left-to-right scan of A12: if A12[i] ≡ 1(3), move A12[i]− 1 to the current beginning of its
bucket.

2.6.3 Merging A12 with A0

We scan A0 and A12 simultaneously. The suffixes from A0 and A12 can be compared among each
other in O(1) time by the following lemma, which follows again directly from the definition of A12.

Lemma 6. Let i ≡ 0(3).

1. If j ≡ 1(3), then Ti...n < Tj...n iff ti < tj, or ti = tj and i+ 1 appears before j + 1 in A12.

2. If j ≡ 2(3), then Ti...n < Tj...n iff ti < tj, or ti = tj and ti+1 < tj+1, or titi+1 = tjtj+1 and
i+ 2 appears before j + 2 in A12.

One should note that in both of the above cases the values i+ 1 and j + 1 (or i+ 2 and j + 2,
respectively) appear in A12 — this is why it is enough to compare at most 2 characters before one
can derive the lexicographic order of Ti...n and Tj...n from A12.

In order to check efficiently whether i appears before j in A12, we need the inverse suffix array
A−112 of A12, defined by A−112 [A12[i]] = i for all i. With this, it is easy to see that i appears before j
in A12 iff A−112 [i] < A−112 [j].

The running time T (n) of the whole suffix sorting algorithm presented in this section is given
by the recursion T (n) = T (2n/3) +O(n), which solves to T (n) = O(n).

Theorem 7. We can construct the suffix array for a text of length n in O(n) time.

2.7 Linear-Time Construction of LCP-Arrays

It remains to be shown how the LCP-array H can be constructed in O(n) time. Here, we assume
that we are given T , A, and A−1, the latter being the inverse suffix array.

We will construct H in the order of the inverse suffix array (i.e., filling H[A−1[i]] before
H[A−1[i+ 1]]), because in this case we know that H cannot decrease too much, as shown next.

Going from suffix Ti...n to Ti+1...n, we see that the latter equals the former, but with the first
character ti truncated. Let h = H[i]. Then the suffix Tj...n, j = A[A−1[i]−1], has a longest common
prefix with Ti...n of length h. So Ti+1...n has a longest common prefix with Tj+1...n of length h− 1.
But every suffix Tk...n that is lexicographically between Tj+1...n and Ti+1...n must have a longest
common prefix with Tj+1...n that is at least h− 1 characters long (for otherwise Tk...n would not be
in lexicographic order). We have thus proved the following:

Lemma 8. For all 1 ≤ i < n: H[A−1[i+ 1]] ≥ H[A−1[i]]− 1.

This gives rise to the following elegant algorithm to construct H:

6

Algorithm 2: Linear-Time Construction of the LCP-Array

h← 0, H[1]← 01

for i = 1, . . . , n do2

if A−1[i] 6= 1 then3

while ti+h = tA[A−1[i]−1]+h do h← h+ 14

H[A−1[i]]← h5

h← max{0, h− 1}6

end7

end8

The linear running time follows because h is always less than n and decreased at most n times
in line 6. Hence, the number of times where k is increased in line 4 is bounded by n, so there are
at most 2n character comparisons in the whole algorithm. We have proved:

Theorem 9. The LCP-array for a text of length n can be constructed in O(n) time.

3 Repeats

Definition 8. Let T = t1t2 . . . tn be a text of length n. A triple (i, h, `) with 1 ≤ i < j ≤ n− `+ 1
is called repeat if Ti...i+`−1 = Tj...j+`−1.

We look at three different tasks:

1. Output all triples (i, j, `) that are a repeat according to Def. 8.

2. Output all strings α ∈ Σ? such that there is a repeat (i, j, `) with Ti...i+`−1 = α(= Tj...j+`−1).

3. Like (2), but instead of outputting α just output a pair (l, r) with α = Tl...r.

Task (1) yields probably many triples (consider T = an), whereas the returned strings in task
(2) may probably be very long. The ouput in task (3) may be seen as a space-efficient representation
of (2). Nevertheless, in most cases we are happy with repeats that cannot be extended, as captured
in the following section.

3.1 Maximal Repeats

Definition 9. A repeat (i, j, `) is called

• left-maximal, if ti−1 6= tj−1.

• right-maximal, if ti+` 6= tj+`.

• maximal, if it is both left- and right-maximal.

To make this definition valid for the text borders, we extend T with t0 = £ to the left, and
with tn+1 = $ to the right (£, $ 6∈ Σ).

Observation 3. If (i, j, `) is a right-maximal repeat, then there must be an internal node v in T ’s
suffix tree S with v = Ti...i+`−1. For otherwise S could not display both Ti...i+` and Tj...j+`, which
must be different due to ti+` 6= tj+`.

7

Let
RT = {α ∈ Σ? : there is a maximal repeat (i, j, `) with Ti...i+`−1 = α}

be the set of T ’s maximal repeat strings (task (2) above). Then the observation above shows that
|RT | < n, as there are only n leaves and hence less than n internal nodes in the suffix tree. Hence,
for task (3) we should be able to come up with a O(n)-time algorithm.

It remains to show how left-maximality can be checked efficiently.

Definition 10. Let S be T ’s suffix tree. A node v in S is called left-diverse if there are at least two
leaves b1 and b2 below v such that t`(b1)−1 6= t`(b2)−1. [Recall that `(·) denotes the leaf label (=suffix
number)]. Character t`(v)−1 is called v’s left-character.

Lemma 10. A repeat (i, j, `) is maximal iff there is left-diverse node v in T ’s suffix tree S with
v = Ti...i+`−1.

Proof. It remains to care about left-maximality.

“⇒” Let (i, j, `) be maximal. Let v be the node in S with v = Ti...i+`−1, which must exist due to
right-maximality. Due to left-maximality, we know ti−1 6= tj−1. Hence there are two different
leaves b1 and b2 below with `(b1) = i and `(b2) = j. So v is left-diverse.

“⇐” analogous.

This yields the following algorithm to compute RT :

In a depth-first search through S do:

– Let v be the current node.

– If v is a leaf: propagate v’s left-character to its parent.

– If v is internal with children v1, . . . , vk:

∗ If one of the vi’s is left-diverse, or if at least two of the vi’s have a different left-
character: output v and propagate “left-diverse” to the parent.

∗ Otherwise, propagate the unique left-character of the vi’s to the parent.

We formulated the above algorithm to solve task (2) above, but it can easily be adapted to task
(1) or (3). Note in particular the linear running time for (3). For (1), we also have to propagate
lists of positions La(v) to the parent, where La(v) contains all leaf labels below v that have a ∈ Σ
as their left-character. These lists have to be concatenated in linear time (using linked lists with
additional pointers to the ends), and in each step we have to output the Cartesian product of La(v)
and Lb(v) for all a, b ∈ Σ, a 6= b. The resulting algorithm is still optimal (in an output-sensitive
meaning).

3.2 Super-Maximal Repeats

The maximal repeats in Def. 9 can still contain other maximal repeats, as the example T =
axybxxyyyaxyb shows (both xy and axyb are maximal repeats, for example). This is prevented by
the following definition:

8

Definition 11. A maximal repeat (i, j, `) is called super-maximal if there is no maximal repeat
(i′, j′, `′) such that Ti...i+`−1 is a proper subword of Ti′...i′+`−1.

The algorithmic difference to the previous section is that we only have to consider internal
nodes whose children are all leaves. Hence, we can also report all k super-maximal repeats in
output-optimal time O(n+ k).

3.3 Longest Common Substrings

As a last simple example of repeated sequences, consider the following problem: We are given two
strings T1 and T2. Our task is to return the longest string α ∈ Σ? which occurs in both T1 and T2.

Computer-science pioneer Don Knuth conjectured in the late 60’s that no linear-time algorithm
for this problem can exist. However, he was deeply wrong, as suffix trees make the solution almost
trivial: Build a suffix tree S for T = T1#T2. In a DFS through S (where v is the current node),
propagate to v’s parent from which of the Ti’s the suffixes below v come (either from T1, T2, or
from both). During the DFS, remember the node w of greatest string depth which has suffixes
from both T1 and T2 below it. In the end, w is the solution. Total time is O(n) for n = |T1|+ |T2|.

4 Tandem Repeats and Related Repetitive Structures

As usual, let T = t1t2 . . . tn be a string of length n over an alphabet Σ. Our ultimate goal will be
to find all tandem repeats in T , i.e. subwords of the form αα for some α ∈ Σ+. Recall that Ti...j is
a shorthand for titi+1 . . . tj , and is defined to be the empty string ε if j < i.

4.1 Range Minimum Queries

Range Minimum Queries (RMQs) are a versatile tool for many tasks in exact and approximate
pattern matching, as we shall see at various points in this Vorlesung. They ask for the position of
the minimum element in a specified sub-array, formally defined as follows.

Definition 12. Given an array H[1, n] of n integers (or any other objects from a totally ordered
universe) and two indices 1 ≤ i ≤ j ≤ n, rmqH(i, j) is defined as the position of the minimum in
H’s sub-array ranging from i to j, in symbols: rmqH(i, j) = argmini≤k≤j H[k].

We often omit the subscript H if the array under consideration is clear from the context.
Of course, an RMQ can be answered in a trivial manner by scanning H[i, j] (H’s sub-array

ranging from position i to j) for the minimum each time a query is posed. In the worst case, this
takes O(n) query time.

However, if H is static and known in advance, and there are several queries to be answered
on-line, it makes sense to preprocess H into an auxiliary data structure (called index or scheme)
that allows to answer future queries faster. As a simple example, we could precompute all possible(
n+1
2

)
RMQs and store them in a table M of size O(n2) — this allows to answer future RMQs in

O(1) time by a single lookup at the appropriate place in M .
We will show at a later point that this naive approach can be dramatically improved, as the

following proposition anticipates:

Proposition 11. An array of length n can be preprocessed in time O(n) such that subsequent range
minimum queries can be answered in optimal O(1) time.

9

4.2 Longest Common Prefixes and Suffixes

An indispensable tool in pattern matching are efficient implementations of functions that compute
longest common prefixes and longest common suffixes of two strings. We will be particularly
interested in longest common prefixes of suffixes from the same string T :

Definition 13. For a text T of length n and two indices 1 ≤ i, j ≤ n, lcpT (i, j) denotes the
length of the longest common prefix of the suffixes starting at position i and j in T , in symbols:
lcpT (i, j) = max{` ≥ 0 : Ti...i+`−1 = Tj...j+`−1}.

Note that lcp(·) only gives the length of the matching prefix; if one is actually interested in the
prefix itself, this can be obtained by T1...lcp(i,j).

Note also that the LCP-array H from Sect. 2.3 holds the lengths of longest common prefixes of
lexicographically consecutive suffixes: H[i] = lcp(A[i], A[i− 1]). Here and in the remainder of this
chapter, A is again the suffix array of text T .

But how do we get the lcp-values of suffixes that are not in lexicographic neighborhood? The
key to this is to employ RMQs over the LCP-array, as shown in the next lemma (recall that A−1

denotes the inverse suffix array of T).

Lemma 12. Let i 6= j be two indices in T with A−1[i] < A−1[j] (otherwise swap i and j). Then
lcp(i, j) = H[rmqH(A−1[i] + 1, A−1[j])].

Proof. First note that any common prefix ω of Ti...n and Tj...n must be a common prefix of
TA[k]...n for all A−1[i] ≤ k ≤ A−1[j], because these suffixes are lexicographically between Ti...n and
Tj...n and must hence start with ω. Let m = rmqH(A−1[i] + 1, A−1[j]) and ` = H[m]. By the
definition of H, Ti...i+`−1 is a common prefix of all suffixes TA[k]...n for A−1[i] ≤ k ≤ A−1[j]. Hence,
Ti...i+`−1 is a common prefix of Ti...n and Tj...n.

Now assume that Ti...i+` is also a common prefix of Ti...n and Tj...n. Then, by the lexicographic
order of A, Ti...i+` is also a common prefix of TA[m−1]...n and TA[m]...n. But |Ti...i+`| = ` + 1,
contradicting the fact that H[m] = ` tells us that TA[m−1]...n and TA[m]...n share no common prefix
of length more than `.

The above lemma implies that with the inverse suffix array A−1, the LCP-arrayH, and constant-
time RMQs on H, we can answer lcp-queries for arbitrary suffixes in O(1) time.

Now consider the “reverse” problem, that of finding longest common suffixes of prefixes.

Definition 14. For a text T of length n and two indices 1 ≤ i, j ≤ n, lcsT (i, j) denotes the
length of the longest common suffix of the prefixes ending at position i and j in T , in symbols:
lcsT (i, j) = max{k ≥ 0 : Ti−k+1...i = Tj−k+1...j}.

For this, it suffices to build the reverse string T̃ , and prepare it for lcp-queries as shown before.
Then lcsT (i, j) = lcpT̃ (n− i+ 1, n− j + 1).

4.3 Tandem Repeats and Runs

Definition 15. A string S ∈ Σ∗ that can be written as S = ωk for ω ∈ Σ+ and k ≥ 2 is called a
tandem repeat.

The usual task is to extract all tandem repeats from a given sequence of nucleotides (or, less
common, amino acids). We refer the reader to Sect. 7.11.1 of D. Gusfield’s textbook for the
significance of tandem repeats in computational biology.

10

To cope with the existence of overlapping tandem repeats, the concept of runs turns out to be
useful.

Definition 16. Given indices b and e with 1 ≤ b ≤ e ≤ n and an integer ` ≥ 1, the triple (b, e, `)
is called a run in T if

1. Tb...e = ωkν for some ω ∈ Σ` and k ≥ 2, and ν ∈ Σ∗ a (possibly empty) proper prefix of ω.

2. If b > 1, then tb−1 6= tb+`−1 (“maximality to the left”).

3. If e < n, then te+1 6= te−`+1 (“maximality to the right”).

4. There is no `′ < ` such that (b, e, `′) is also a run (“primitiveness of ω”).

Integer ` is called the period of the run, and e−b+1
` its (rational) exponent.

It should be clear that each tandem repeat is contained in a run, and that tandem repeats can
be easily extracted from runs. Hence, from now on we concentrate on the computation of all runs
in T .

The following lemma, which is sometimes taken as the definition of runs, follows easily from
Definition 16.

Lemma 13. Let (b, e, `) be a run in T . Then tj−` = tj for all b+ ` ≤ j ≤ e.

Proof. We know that Tb...e = ωkν for some ω with |ω| = ` and ν a proper prefix of ω. If j
is inside of the i’th occurrence of ω in Tb...e (i ≥ 2), going ` positions to the left gives the same
character in the (i − 1)’th occurrence of ω in Tb...e. The same is true if j is inside of ν, because ν
is a prefix of ω.

The following proposition has a venerable history in computer science. Proving it has become
simpler since the original publication of Kolpakov and Kucherov from 1999, but it would still take
about 4 pages of dense mathematics, so we omit the proof in this Vorlesung.

Proposition 14. The number of runs in a text of length n is in O(n).

We now give a first hint at how we can use our previous knowledge to tackle the computation
of all runs. From this point onwards, we will not require the period of a run be minimal (fourth
point in Definition 16) — this condition can be easily incorporated into the whole algorithm.

Lemma 15. For ` ≤ bn2 c and an index j with ` < j ≤ n− `+ 1, let s = lcs(j − 1, j − `− 1) and
p = lcp(j, j − `). Then the following three statements are equivalent:

1. There is a run (b, e, `) in T with b+ ` ≤ j ≤ e+ 1

2. s+ p ≥ `

3. (j − `− s, j + p− 1, `) is a run in T

Proof. (1)⇒(2): Let (b, e, `) be the run. We decompose Tb...e into three strings u, v, w with
u = Tb...j−`−1, v = Tj−`...j−1, and w = Tj...e, so that Tb...e = uvw (u and w are possibly empty).
Due to Lemma 13, we have that |u| = s and |w| = p. Because |v| = ` by construction and
|Tb...e| = e− b+ 1, we get

s+ p+ ` = |Tb...e| = e− b+ 1 ≥ 2` ,

11

where the last inequality follows from the “k ≥ 2” in Definition 16. Hence, s+ p ≥ `.
(2)⇒(3): Let s+ p ≥ `. First note that due to the definition of lcp/lcs, we get that

Tj−`−s...j−`+p−1 = Tj−s...j+p−1 . (∗)

Let ω = Tj−`−s...j−s−1 be the prefix of Tj−`−s...j−`+p−1 of length `. Due to (∗) and the fact that
s + p ≥ ` implies that j − ` − s + (s + p) ≥ j − s, we get Tj−s...j+`−s−1 = ω. This continues until
no additional ω fits before position j + p − 1. We then define the remaining prefix of ω that fits
before position j + p − 1 as ν — this shows that Tj−`−s...j+p−1 = ωkν for some k ≥ 2. Further,
because of the maximality of lcp/lcs we see that tj−`−s−1 6= tj−s−1, and likewise tj+p 6= tj+p−`.
Hence, (j − `− s, j + p− 1, `) is a run in T .
(3)⇒(1): This is obvious.

4.4 Algorithm

Lemma 15 gives rise to a first algorithm for computing all the runs in T : simply check for every
possible period ` ≤ bn2 c and every j if there is a run (b, e, `) with b+` ≤ j ≤ e+1, using the lemma.

A key insight is that e+ 1 ≥ b+ 2` for every run (b, e, `), and hence we can increase j by ` after
every check at position j, without missing any runs. The following pseudo-code incorporates these
ideas.

Algorithm 3: O(n log n)-algorithms for locating all runs in a string

for ` = 1, . . . , bn2 c do1

j ← 2`+ 12

while j ≤ n+ 1 do3

s← lcs(j − 1, j − `− 1)4

p← lcp(j, j − `)5

if s+ p ≥ ` and p < ` then output the run (j − `− s, j + p− 1, `)6

j ← j + `7

end8

end9

In step ` of the outer for-loop, dn` e positions j are tested in the inner while-loop. Hence, the
total running time is order of

n/2∑
`=1

n

`
≤ n

n∑
`=1

1

`
= O(n log n) .

Hence, we get:

Theorem 16. We can find all runs in a string of length n in O(n log n) time.

In fact, some subtle refinements of the above algorithm (which we do not discuss in this Vor-
lesung due to lack of time) lead to:

Proposition 17. We can find all runs in a string of length n in O(n) time.

12

5 Lowest Common Ancestors and Range Minimum Queries

5.1 Reducing Lowest Common Ancestors to Range Minimum Queries

Recall the definition of range minimum queries (RMQs) from the chapter on tandem repeats:
rmqD(l, r) = argminl≤k≤rD[k] for an array D[1, n] and two indices 1 ≤ l ≤ r ≤ n. We show in this
section that a seemingly unrelated problem, namely that of computing lowest common ancestors
(LCAs) in static rooted trees, can be reduced quite naturally to RMQs.

Definition 17. Given a rooted tree T with n nodes, lcaT (v, w) for two nodes v and w denotes the
unique node ` with the following properties:

1. Node ` is an ancestor of both v and w.

2. No descendant of ` has property (1).

Node ` is called the lowest common ancestor of v and w.

The reduction of an LCA-instance to an RMQ-instance works as follows:

• Let r be the root of T with children u1, . . . , uk.

• Define T ’s inorder tree walk array I = I(T) recursively as follows:

– If k = 0, then I = [r].

– If k = 1, then I = I(Tu1) ◦ [r].

– Otherwise, I = I(Tu1) ◦ [r] ◦ I(Tu2) ◦ [r] ◦ · · · ◦ [r] ◦ I(Tuk), where “◦” denotes array
concatenation. Recall that Tv denotes T ’s subtree rooted at v.

• Define T ’s depth array D = D(T) (of the same length as I) such that D[i] equals the tree-
depth of node I[i].

• Augment each node v in T with a “pointer” pv to an arbitrary occurrence of v in I (pv = j
only if I[j] = v).

Lemma 18. The length of I (and of D) is between n (inclusively) and 2n (exclusively).

Proof. By induction on n.

n = 1: The tree T consists of a single leaf v, so I = [v] and |I| = 1 < 2n.

≤ n→ n+ 1: Let r be the root of T with children u1, . . . , uk. Let ni denote the number of nodes
in Tui . Recall I = I(Tu1) ◦ [r] ◦ · · · ◦ [r] ◦ I(Tuk). Hence,

|I| = max(k − 1, 1) +
∑

1≤i≤k
|I(Tui)|

≤ max(k − 1, 1) +
∑

1≤i≤k
(2ni − 1) (by the induction hypothesis)

= max(k − 1, 1)− k + 2
∑

1≤i≤k
ni

≤ 1 + 2
∑

1≤i≤k
ni

= 1 + 2(n− 1)

< 2n .

13

Here comes the desired connection between LCA and RMQ:

Lemma 19. For any pair of nodes v and w in T , lcaT (v, w) = I[rmqD(pv, pw)].

Proof. Consider the inorder tree walk I = I(T) of T . Assume pv ≤ pw (otherwise swap). Let `
denote the LCA of v and w, and let u1, . . . , uk be `’s children. Look at

I(T`) = I(Tu1) ◦ · · · ◦ I(Tux) ◦ [`] ◦ · · · ◦ [`] ◦ I(Tuy) ◦ · · · ◦ I(Tuk)

such that v ∈ Tux and w ∈ Tuy (v = ` or w = ` can be proved in a similar manner).
Note that I(T`) appears in I exactly the same order, say from a to b: I[a, b] = I(T`). Now let

d be the tree depth of `. Because `’s children ui have a greater tree depth than d, we see that D
attains its minima in the range [a, b] only at positions i where the corresponding entry I[i] equals
`. Because pv, pw ∈ [a, b], and because the inorder tree walk visits ` between ux and uy, we get the
result.

To summarize, if we can solve RMQs in O(1) time using O(n) space, we also have a solution
for the LCA-problem within the same time- and space-bounds.

5.2 O(1)-RMQs with O(n log n) Space

We already saw that with O(n2) space, O(1)-RMQs are easy to realize by simply storing the answers
to all possible RMQs in a two-dimensional table of size n×n. We show in this section a little trick
that lowers the space to O(n log n).

The basic idea is that it suffices to precompute the answers only for query lengths that are a
power of 2. This is because an arbitrary query rmqD(l, r) can be decomposed into two overlapping
sub-queries of equal length 2h with h = blog2(r − l + 1)c:

m1 = rmqD(l, l + 2h − 1) and m2 = rmqD(r − 2h + 1, r)

The final answer is then given by rmqD(l, r) = argminµ∈{m1,m2}D[µ]. This means that the pre-
computed queries can be stored in a two-dimensional table M [1, n][1, blog2 nc], such that

M [x][h] = rmqD(x, x+ 2h − 1)

whenever x+ 2h − 1 ≤ n. Thus, the size of M is O(n log n). With the identity

M [x][h] = rmqD(x, x+ 2h − 1)

= argmin{D[i] : i ∈ {x, . . . , x+ 2h − 1}}
= argmin{D[i] : i ∈ {rmqD(x, x+ 2h−1 − 1),rmqD(x+ 2h−1, x+ 2h − 1)}}
= argmin{D[i] : i ∈ {M [x][h− 1],M [x+ 2h−1][h− 1]}} ,

we can use dynamic programming to fill M in optimal O(n log n) time.

5.3 O(1)-RMQs with O(n) Space

We divide the input array D into blocks B1, . . . , Bm of size s := log2 n
4 (where m = dns e denotes

the number of blocks): B1 = D[1, s], B2 = D[s+ 1, 2s], and so on. The reason for this is that any
query rmqD(l, r) can be decomposed into at most three non-overlapping sub-queries:

14

• At most one query spanning exactly over several blocks.

• At most two queries completely inside of a block.

We formalize this as follows: Let i = d lse and j = d rse be the block numbers where l and r occur,
respectively. If i = j, then we only need to answer one in-block-query to obtain the final result.
Otherwise, rmqD(l, r) is answered by rmqD(l, r) = argminµ∈{m1,m2,m3}D[µ], where the mi’s are
obtained as follows:

• m1 = rmqD(l, is)

• m2 = rmqD(is+ 1, (j − 1)s) (only necessary if j > i+ 1)

• m3 = rmqD((j − 1)s+ 1, r)

We first show how to answer queries spanning exactly over several blocks (i.e., finding m2).

5.3.1 Queries Spanning Exactly over Blocks

Define a new array D′[1,m], such that D′[i] holds the minimum inside of block Bi: D′[i] =
min(i−1)s<j≤isD[j]. We then prepare D′ for constant-time RMQs with the algorithm from Sect.
5.2, using

O(m logm) = O(
n

s
log(

n

s
)) = O(

n

log n
log

n

log n
) = O(n)

space.
We also define a new array W [1,m], such that W [i] holds the position where D′[i] occurs in

D: W [i] = argmin(i−1)s<j≤isD[j]. A query of the form rmqD(is+ 1, (j − 1)s) is then answered by
W [rmqD′(i+ 1, j − 1)].

5.3.2 Queries Completely Inside of Blocks

We are left with answering “small” queries that lie completely inside of blocks of size s. These are
actually more complicated to handle than the “long” queries from Sect. 5.3.1.

Definition 18. Let Bj [1, s] be a block of size s. The Cartesian Tree C(Bj) of Bj is a labelled binary
tree, recursively defined as follows:

• Create a root node r and label it with p = argmin1≤i≤sBj [i].

• The left and right children of r are the roots of the Cartesian Trees C(Bj [1, p − 1]) and
C(Bj [p+ 1, s]), respectively (if existent).

Constructing the Cartesian Tree according to this definition requires O(s2) time (scanning
for the minimum in each recursive step), or maybe O(s log s) time after an initial sorting of Bj .
However, there is also a linear time algorithm for constructing C(Bj), which we describe next.

Let Ci denote the Cartesian Tree for Bj [1, i]. Tree C1 just consists of a single node r labelled
with 1. We now show how to obtain Ci+1 from Ci. Let the rightmost path of Ci be the path v1, . . . , vk
in Ci, where v1 is the root, and vk is the node labelled i. Let li be the label of node vi for 1 ≤ i ≤ k.

To get Ci+1, climb up the rightmost path (from vk towards the root v1) until finding the first
node vy where the corresponding entry in Bj is not larger than Bj [i+ 1]:

Bj [ly] ≤ Bj [i+ 1], and Bj [lz] > Bj [i+ 1] for all y < z ≤ k .

15

Then insert a new node w as the right child of vy (or as the root, if vy does not exist), and label w
with i+ 1. Node vy+1 becomes the left child of w. This gives us Ci+1.

The linear running time of this algorithm can be seen by the following amortized argument:
each node is inserted onto the rightmost path exactly once. All nodes on the rightmost path (except
the last, vy) traversed in step i are removed from the rightmost path, and will never be traversed
again in steps j > i. So the running time is proportional to the total number of removed nodes
from the rightmost path, which is O(n), because we cannot remove more nodes than we insert.

How is the Cartesian Tree related to RMQs?

Lemma 20. Let Bi and Bj be two blocks with equal Cartesian Trees. Then rmqBi
(l, r) =

rmqBj
(l, r) for all 1 ≤ l ≤ r ≤ s.

Proof. By induction on s.

s = 1: C(Bi) = C(Bj) consists of a single node labelled 1, and rmq(1, 1) = 1 in both arrays.

≤ s→ s+ 1: Let v be the root of C(Bi) = C(Bj) with label µ. By the definition of the Cartesian
Tree,

argmin
1≤k≤s

Bi[k] = µ = argmin
1≤k≤s

Bj [k] . (1)

Because the left (and right) children of C(Bi) and C(Bj) are roots of the same tree, this
implies that the Cartesian Trees C(Bi[1, µ − 1]) and C(Bj [1, µ − 1]) (and C(Bi[µ + 1, s]) and
C(Bj [µ+ 1, s])) are equal. Hence, by the induction hypothesis,

rmqBi
(l, r) = rmqBj

(l, r)∀1 ≤ l ≤ r < µ, and rmqBi
(l, r) = rmqBj

(l, r)∀µ < l ≤ r ≤ s. (2)

In total, we see that rmqBi
(l, r) = rmqBj

(l, r) for all 1 ≤ l ≤ r ≤ s, because a query must
either contain position µ (in which case, by (1), µ is the answer to both queries), or it must
be completely to the left/right of µ (in which case (2) gives what we want).

The consequence of this is that we only have to precompute in-block RMQs for blocks with
different Cartesian Trees, say in a table called P . But how do we know in O(1) time where to look
up the results for block Bi? We need to store a “number” for each block in an array T [1,m], such
that T [i] gives the corresponding row in the lookup-table P .

Lemma 21. A binary tree T with s nodes can be represented uniquely in 2s+ 1 bits.

Proof. We first label each node in T with a ’1’ (these are not the same labels as for the
Cartesian Tree!). In a subsequent traversal of T , we add “missing children” (labelled ’0’) to every
node labelled ’1’, such that in the resulting tree T ′ all leaves are labelled ’0’. We then list the
0/1-labels of T ′ level-wise (i.e., first for the root, then for the nodes at depth 1, then for depth 2,
etc.). This uses 2s+ 1 bits, because in a binary tree without nodes of out-degree 1, the number of
leaves equals the number of internal nodes plus one.

It is easy to see how to reconstruct T from this sequence. Hence, the encoding is unique.
So we perform the following steps:

1. For every block Bi, we compute the bit-encoding of C(Bi) and store it in T [i]. Because
s = logn

4 , every bit-encoding can be stored in a single computer word.

16

2. For every possible bit-vector t of length 2s + 1 that describes a binary tree on s nodes, we
store the answers to all RMQs in the range [1, s] in a table:

P [t][l][r] = rmqB(l, r) for some array B of size s whose Cartesian Tree has bit-encoding t

Finally, to answer a query rmqD(l, r) which is completely contained within a block i = d lse = d rse,
we simply look up the result in P [T [i]][l − (i− 1)s][r − (i− 1)s].

To analyze the space, we see that T occupies m = n/ log n = O(n) words. It is perhaps more
surprising that also P occupies only a linear number of words, namely order of

22s · s · s =
√
n · log2 n = O(n) .

Construction time of the data structures isO(ms) = O(n) for T , andO(22s·s·s·s) = O(
√
n·log3 n) =

O(n) for P (the additional factor s accounts for finding the minimum in each precomputed query
interval).

This finishes the description of the algorithm.

6 Lempel-Ziv Compression

6.1 Longest Previous Substring

We now show how to compute an array L of longest previous substrings, where L[i] holds the length
of the longest prefix of Ti...n that has another occurrence in T starting strictly before i.

Definition 19. The longest-previous-substring-array L[1, n] is defined such that L[i] = max{` ≥
0 : ∃k < i with Ti...i+`−1 = Tk...k+`−1}.

Note that for a character a ∈ Σ which has its first occurrence in T at position i, the above
definition correctly yields L[i] = 0, as in this case any position k < i satisfies Ti...i−1 = ε = Tk...k−1.

If we are also interested in the position of the longest previous substring, we need another array:

Definition 20. The array O[1, n] of previous occurrences is defined by:

O[i] =

{
k if Ti...i+L[i]−1 = Tk...k+L[i]−1 6= ε

⊥ otherwise

A first approach for computing L is given by the following lemma, which follows directly from
the definition of L and lcp:

Lemma 22. For all 2 ≤ i ≤ n: L[i] = max{lcp(i, j) : 1 ≤ j < i}.

For convenience, from now on we assume that both A and H are padded with 0’s at their
beginning and end: A[0] = H[0] = A[n + 1] = H[n + 1] = 0. We further define T0...n to be the
empty string ε.

Definition 21. Given the suffix array A and an index 1 ≤ i ≤ n in A, the previous smaller value
function PSVA(·) returns the nearest preceding position where A is strictly smaller, in symbols:
PSVA(i) = max{k < i : A[k] < A[i]}. The next smaller value function NSV(·) is defined similarly
for nearest succeeding positions: NSVA(i) = min{k > i : A[k] < A[i]}.

17

The straightforward solution that stores the answers to all PSV-/NSV-queries in two arrays
P [1, n] and N [1, n] is sufficient for our purposes. The next lemma shows how PSVs/NSVs can be
used to compute L efficiently:

Lemma 23. For all 1 ≤ i ≤ n, L[A[i]] = max(lcp(A[PSVA(i)], A[i]), lcp(A[i], A[NSVA(i)])).

Proof. Rewriting the claim of Lemma 22 in terms of the suffix array, we get

L[A[i]] = max{lcp(A[i], A[j]) : A[j] < A[i]}

for all 1 ≤ i ≤ n. This can be split up as

L[A[i]] = max(max{lcp(A[i], A[j]) : 0 ≤ j < i and A[j] < A[i]},
max{lcp(A[i], A[j]) : i < j ≤ n and A[j] < A[i]}) .

To complete the proof, we show that lcp(A[PSV(i)], A[i]) = max{lcp(A[i], A[j]) : 0 ≤ j <
i and A[j] < A[i]} (the equation for NSV follows similarly). To this end, first consider an in-
dex j < PSV(i). Because of the lexicographic order of A, any common prefix of TA[j]...n and TA[i]...n
is also a prefix of TA[PSV(i)]...n. Hence, the indices j < PSV(i) need not be considered for the
maximum. For the indices j with PSV(i) < j < i, we have A[j] ≥ A[i] by the definition of PSV.
Hence, the maximum is given by lcp(A[PSV(i)], A[i]).

To summarize, we build the array L of longest common substrings in O(n) time as follows:

• Build the suffix array A and the LCP-array H.

• Calculate two arrays P and N such that PSVA(i) = P [i] and NSVA(i) = N [i].

• Prepare H for O(1)-RMQs, as lcp(A[PSV(i)], A[i]) = H[rmqH(P [i] + 1, i)] by Lemma 12.

• Build L by applying Lemma 23 to all positions i.

The array O of previous occurrences can be filled along with L, by writing to O[A[i]] the value
A[P [i]] if lcp(A[P [i]], A[i]) ≥ lcp(A[N [i]], A[i]), and the value A[N [i]] otherwise.

6.2 Lempel-Ziv Factorization

Although the Lempel-Ziv factorization is usually introduced for data compression purposes (gzip,
WinZip, etc. are all based on it), it also turns out to be useful for efficiently finding repetitive
structures in texts, due to the fact that it “groups” repetitions in some useful way.

Definition 22. Given a text T of length n, its LZ-decomposition is defined as a sequence of k
strings s1, . . . , sk, si ∈ Σ+ for all i, such that T = s1s2 . . . sk, and si is either a single letter not
occurring in s1 . . . si−1, or the longest factor occurring at least twice in s1s2 . . . si.

Note that the “overlap” in the definition above exists on purpose, and is not a typo!
We describe the LZ-factorization by a list of k pairs (b1, e1), . . . , (bk, ek) such that si = Tbi...ei .

We now observe that given our array L of longest previous substrings from the previous section,
we can obtain the LZ-factorization quite easily in linear time:

18

Algorithm 4: O(n)-computation of the LZ-factorization

i← 1, e0 ← 01

while ei−1 < n do2

bi ← ei−1 + 13

ei ← bi + max(0, L[bi]− 1)4

end5

7 Faster Search with Suffix Trees and Arrays

7.1 Accelerated Search in Suffix Arrays

The simple binary search (Alg. 1) may perform many unnecessary character comparisons, as in
every step it compares P from scratch. With the help of the lcp-function from the previous
section, we can improve the search in suffix arrays from O(m log n) to O(m+ log n) time. The idea
is to remember the number of matching characters of P with TA[l]...n and TA[r]...n, if [l : r] denotes
the current interval of the binary search procedure. Let λ and ρ denote these numbers,

λ = lcp(P, TA[l]...n) and ρ = lcp(P, TA[r]...n).

Initially, both λ and ρ are 0. Let us consider an iteration of the first while-loop in function
SAsearch(P), where we wish to determine whether to continue in [l : q] or [q, r]. (Alg. 1 would
actually continue searching in [q + 1, r] in the second case, but this minor improvement is not
possible in the accelerated search.) We are in the following situation:

A =
l q r

ρ
λ

P1

·
·
·
·
Pλ

P1

·
·
Pρ

Without loss of generality, assume λ ≥ ρ (otherwise swap). We then look up ξ = lcp(A[l], A[q])
as the longest common prefix of the suffixes TA[l]...n and TA[q]...n. We look at three different cases:

1. ξ > λ

A =
l q r

αα
λ

ξ
ρ

TA[l]+λ
=

TA[q]+λ

λ

19

Because Pλ+1 >lex TA[l]+λ = TA[q]+λ, we know that P >lex TA[q]...n, and can hence set l ← q,
and continue the search without any character comparison. Note that ρ and in particular λ
correctly remain unchanged.

2. ξ = λ

A =
l q r

ααξ = λ
ρ

In this case we continue comparing Pλ+1 with TA[q]+λ, Pλ+2 with TA[q]+λ+1, and so on, until
P is matched completely, or a mismatch occurs. Say we have done this comparison up to
Pλ+k. If Pλ+k >lex TA[q]+λ+k−1, we set l ← q and λ ← k − 1. Otherwise, we set r ← q and
ρ← k − 1.

3. ξ < λ

A =
l q r

αα
λ

ξ ρ
ξ

Pξ+1

6=
TA[q]+ξ

First note that ξ ≥ ρ, as lcp(A[l], A[r]) ≥ ρ, and TA[q]...n lies lexicographically between TA[l]...n
and TA[r]...n. So we can set r ← q and ρ ← ξ, and continue the binary search without any
character comparison.

This algorithm either halves the search interval (case 1 and 3) without any character comparison,
or increases either λ or ρ for each successful character comparison. Because neither λ nor ρ are
ever decreased, and the search stops when λ = ρ = m, we see that the total number of character
comparisons (= total work of case 2) is O(m). So far we have proved the following theorem:

Theorem 24. Together with lcp-information, the suffix array supports counting and reporting
queries in O(m + log n) and O(m + log n + |OP |) time, respectively (recall that OP is the set of
occurrences of P in T).

7.2 Suffix Trays

We now show how the O(m log σ)-algorithm for suffix trees and the O(m+ log n)-algorithm can be
combined to obtain a faster O(m+log σ) search-algorithm. The general idea is to start the search in

20

the suffix tree where some additional information has been stored to speed up the search, and then,
at an “appropriate” point, continue the search in the suffix array with a sufficiently small interval.
Note that the accelerated search-algorithm from Sect. 7.1, if executed on a sub-interval I = A[x, y]
of A instead of the complete array A[1, n], runs in O(m + log |I|) time. This is O(m + log σ) for
|I| = σO(1).

We first classify the nodes in T ’s suffix tree S as follows:

1. Node v is called heavy if the numbers of leaves below v is at least σ.

2. Otherwise, node v is called light.

. . .

≥ σ

v

Tv

< σ

v

Tv

heavy light

Note that all heavy nodes in S have only heavy ancestors by definition, and hence the heavy
nodes form a connected subtree of S. Heavy nodes v are further classified into

(a) branching, if at least two of v’s children are heavy,

(b) non-branching, if exactly one of v’s children is heavy,

(c) terminal, if none of v’s children are heavy.

Example 1.

6 8 1 10 3 7 9 24 5

T = ATTAAATATC

A T

C

A T A

A

A
A

A

A

T

T

T
C

CT

CC

A

T
C

A

T

T
C

A
T
A
T
C

T
A
···

heavy

light

branching

terminalnon-branching

σ = 3

Lemma 25. The number of branching heavy nodes is O(nσ).

21

Proof : First count the terminal heavy nodes. By definition, every heavy node has ≥ σ leaves
below itself. Note that every leaf in S must be below exactly one terminal heavy node. For the sake
of contradiction, suppose there were more then n

σ terminal heavy nodes. Then the tree S would
contain > n

σσ = n leaves. Contradiction! Hence, the number of terminal heavy nodes is at most n
σ .

Now look at the subtree of S consisting of terminal and branching heavy nodes only. This is a
tree with at most n

σ leaves, and every internal node has at least two children. For such a tree we
know that the number of internal nodes is bounded by the number of leaves. The claim follows.

We now augment the suffix tree with additional information at every heavy node v:

(a) At every branching heavy node v, we store an array Bv of size σ, where we store pointers to
v’s children according to the first character on the corresponding edge (like in the “bad” suffix
tree with O(nσ) space!).

(b) At every non-branching heavy node v, we store a pointer hv to its single heavy child.

(c) All terminal heavy nodes, and all light children of branching or non-branching heavy nodes
are called interval nodes. Every interval node v is augmented with its suffix-interval Iv, which
contains the start- and end-position in the suffix array A of the leaf-labels below v. Furthermore,
the suffix-intervals of adjacent light children of a non-branching heavy node are contracted into
one single interval. Thus, non-branching heavy nodes v have at most 3 children (one heavy
child hv, and one interval node each to the left/right of hv).

Everything in the tree below the interval nodes can be deleted. The resulting tree, together
with the suffix array A, is called the suffix tray.

Example 2. The suffix tray for T = ATTAAATATC is shown in the following picture (the dotted
part has been deleted from the tree):

v6 v8 v1 v10 v3 v7 v9 v2v4 v5

T = ATTAAATATC σ = 3

v1

v2

v3 v6 v12

v11

Iv6 = [3, 5]

Iv11 = [7, 10]

Bv11 = [v2, v10, v11]
A C T

A = 6 8 1 10 3 7 9 24 5

Iv3 = [1, 2]

hv2

A T

T

3 4 5 6 7 8 9 1011 2

C

Iv10 = [6, 6]

Lemma 26. The size of the resulting data structure is O(n).

22

Proof : From Lemma 25 we know that there are only O(nσ) heavy branching nodes. So the total
space for heavy branching nodes is O(nσσ) = O(n). All other information is constant at each node.
The claim follows.

Now we describe the search procedure. We start as with normal suffix trees and try reading
P from the root downwards. There are three different cases to consider (assume the characters
P1...i−1 have already been matched, and we have arrived at node v = P1...i−1 of the suffix tray):

(a) At branching heavy nodes v, we can find the the correctly labeled edge (i. e., the edge whose
label starts with Pi) in O(1) time, by consulting Bv[Pi].

(b) At non-branching heavy nodes v, we first check if the search continues at the heavy child, by
comparing the next character Pi with the first character a ∈ Σ on the incoming edge (v, hv).
If this is the case (Pi = a), we compare all characters on the edge (v, hv) to the pattern and, if
necessary, continue the search procedure at the heavy child hv. Otherwise (Pi 6= a), there are
two possibilities. If Pi < a, we continue at the (only) interval node left of hv with case (c). If
Pi > a, we do the same for the only interval node right of hv with case (c).

(c) At interval nodes v, we switch to the suffix array search algorithm from section 1.8, using Iv
as the start interval.

Lemma 27. The length of the intervals stored at the interval nodes is O(σ2).

Proof : The intervals of at most σ− 1 light nodes are contracted into a single interval, and each
light node has at most σ − 1 leaves below itself.

Theorem 28. The suffix tray supports counting and reporting queries in O(m+ log σ) and O(m+
log σ + |OP |) time, respectively.

Proof : We either advance by one character in P with a constant amount of work, or we
arrive at an interval node v, where we perform the accelerated binary search in O(m + log |Iv|) =
O(m+ log σ2) = O(m+ 2 log σ) = O(m+ log σ) time, by Lemma 27.

8 The Burrows-Wheeler Transformation

The Burrows-Wheeler Transformation was originally invented for text compression. Nonetheless, it
was noted soon that it is also a very useful tool in text indexing. In this Chapter, we introduce the
transformation and briefly review its merits for compression. The subsequent chapter on backwards
search will then explain how it is used in the indexing scenario.

8.1 The Transformation

Definition 23. Let T1...n be a text of length n, where Tn = $ is a unique character lexicographically
smaller than all other characters in Σ. Then the i-th cyclic shift of T is Ti...nT1...i−1. We denote
it by T (i).

Example 3.

23

T = CACAACCAC$

1 2 3 4 5 6 7 8 9 10

T (6) = CCAC$CACAA

The Burrows-Wheeler-Transformation (bwt) is obtained by the following steps:

1. Write all cyclic shifts T (i), 1 ≤ i ≤ n, column-wise next to each other.

2. Sort the columns lexicographically.

3. Output the last row. This is T bwt.

Example 4.

T = CACAACCAC$

1 2 3 4 5 6 7 8 9 10

C A C A A C C A C $
A C A A C C A C $ C
C A A C C A C $ C A
A A C C A C $ C A C
A C C A C $ C A C A
C C A C $ C A C A A
C A C $ C A C A A C
A C $ C A C A A C C
C $ C A C A A C C A
$ C A C A A C C A C

T (1) T (6)

$ A A A A C C C C C
C A C C C $ A A A C
A C $ A C C A C C A
C C C A A A C $ A C
A A A C C C C C A $
A C C C $ A A A C C
C $ A C C A C C C A
C C A A A C $ A A C
A A C $ C C C A C A
C C C C A A A C $ A

1 2 3 4 5 6 7 8 9 10

F (first)

TBWT =
L (last)

T (1)

⇒
sort

columns
lexicogr.

The text T bwt in the last row is also denoted by L (last), and the text in the first row by F
(first). Note:

• Every row in the bwt-matrix is a permutation of the characters in T .

• Row F is a sorted list of all characters in T .

• In row L = T bwt, similar characters are grouped together. This is why T bwtcan be compressed
more easily than T .

8.2 Construction of the BWT

The bwt-matrix needs not to be constructed explicitly in order to obtain T bwt. Since T is termi-
nated with the special character $, which is lexicographically smaller than any a ∈ Σ, the shifts
T (i) are sorted exactly like T ’s suffixes. Because the last row consists of the characters preceding
the corresponding suffixes, we have

T bwt
i = TA[i]−1(= T (A[i])

n) ,

where A denotes again T ’s suffix array, and T0 is defined to be Tn (read T cyclically!). Because the
suffix array can be constructed in linear time (Thm. 7), we get:

24

Theorem 29. The BWT of a text length-n text over an integer alphabet can be constructed in
O(n) time.

Example 5.

T = CACAACCAC$

$ A A A A C C C C C
C A C C C $ A A A C
A C $ A C C A C C A
C C C A A A C $ A C
A A A C C C C C A $
A C C C $ A A A C C
C $ A C C A C C C A
C C A A A C $ A A C
A A C $ C C C A C A
C C C C A A A C $ A

1 2 3 4 5 6 7 8 9 10

F (first)

TBWT =
L (last)

A=10 4 8 2 5 9 3 7 1 6

8.3 The Reverse Transformation

The amazing property of the bwt is that it is not a random permutation of T ’s letters, but that it
can be transformed back to the original text T . For this, we need the following definition:

Definition 24. Let F and L be the strings resulting from the bwt. Then the last-to-front mapping
lf is a function lf : [1, n]→ [1, n], defined by

lf(i) = j ⇐⇒ T (A[j]) = (T (A[i]))(n) (⇐⇒ A[j] = A[i] + 1) .

(Remember that T (A[i]) is the i’th column in the bwt-matrix, and (T (A[i]))(n) is that column rotated
by one character downwards.)

Thus, lf(i) tells us the position in F where L[i] occurs.

Example 6.

T = CACAACCAC$

$ A A A A C C C C C
C A C C C $ A A A C
A C $ A C C A C C A
C C C A A A C $ A C
A A A C C C C C A $
A C C C $ A A A C C
C $ A C C A C C C A
C C A A A C $ A A C
A A C $ C C C A C A
C C C C A A A C $ A

1 2 3 4 5 6 7 8 9 10

F (first)

TBWT =
L (last)

LF = 6 7 8 9 2 3 4 10 1 5

25

Observation 4. Equal characters preserve the same order in F and L. That is, if L[i] = L[j]
and i < j, then lf(i) < lf(j). To see why this is so, recall that the bwt-matrix is sorted lex-
icographically. Because both the lf(i)’th and the lf(j)’th column start with the same character
a = L[i] = L[j], they must be sorted according to what follows this character a, say α and β. But
since i < j, we know α <lex β, hence lf(i) < lf(j).

F

L

aa

a a

α
α

β
β

i j

lf(i) lf(j)

This observation allows us to compute the lf-mapping without knowing the suffix array of T .

Definition 25. Let T be a text of length n over an alphabet Σ, and let L = T bwt be its bwt.

• Define C : Σ→ [1, n] such that C(a) is the number of occurrences in T of characters that are
lexicographically smaller than a ∈ Σ.

• Define occ : Σ × [1, n] → [1, n] such that occ(a, i) is the number of occurrences of a in L’s
length-i-prefix L[1, i].

Lemma 30. With the definitions above,

lf(i) = C(L[i]) + occ(L[i], i) .

Proof : Follows immediately from the observation above.

This gives rise to the following algorithm to recover T from L = T bwt.

1. Scan L = T bwt and compute array C[1, σ].

2. Compute the first row F from C; as F consists of all characters in L sorted lexicographically,
this step is trivial.

3. Compute occ(L[i], i) for all 1 ≤ i ≤ n.

4. Recover T from right to left : we know that Tn = $, and the corresponding cyclic shift T (n)

appears in column 1 in bwt. Hence, Tn−1 = L[1]. Shift T (n−1) appears in column lf(1), and
thus Tn−2 = L[lf(1)]. This continues until the whole text has been recovered:

Tn−i = L[lf(lf(. . . (lf(1)) . . .))︸ ︷︷ ︸
i−1 applications of lf

]

26

Example 7.

Tn = $, k = 1
L[1] = C⇒ Tn−1 = C , k = LF(1) = 6
L[6] = C⇒ Tn−2 = A , k = LF(6) = 3
L[3] = C⇒ Tn−3 = C , k = LF(3) = 8
L[8] = C⇒ Tn−4 = C , k = LF(8) = 10
L[10] etc.

T reversed

C = 0 1 5

F = $ A A A A C C C C C

L = C C C C A A A C $ A

occ(L[i], i) = 1 2 3 4 1 2 3 5 1 4

$ A C

8.4 Compression

Storing T bwt plainly needs the same space as storing the original text T . However, because equal
characters are grouped together in T bwt, we can compress T bwt in a second stage. We review two
different compression methods in this section.

8.4.1 Move-to-front (MTF) & Huffman Coding

• Initialize a list Y containing each character in Σ in alphabetic order.

• In a left-to-right scan of T bwt, (i = 1, . . . , n), compute a new array R[1, n]:

– Write the position of character T bwt
i in Y to R[i].

– Move character T bwt
i to the front of Y .

• Encode the resulting string/array R with any kind of reversible compressor, e. g. Huffman,
into a string R.

27

Example 8.

T BWT =C C C C A A A C $ A

i Yold T BWT
i R[i] Ynew

1 $AC C 3 CA$
2 CA$ C 1 CA$
3 CA$ C 1 CA$
4 CA$ C 1 CA$
5 CA$ A 2 AC$
6 AC$ A 1 AC$
7 AC$ A 1 AC$
8 AC$ C 2 CA$
9 CA$ $ 3 $CA
10 $CA A 3 A$C

Observation 5. MTF produces “many small” numbers for equal characters that are “close to-
gether” in T bwt. These can be compressed using an order-0 compressor, e. g. Huffman, as in the
next example.

Example 9.

character frequency

1
2
3

5
2
3

⇒
1

1

0

0

12 3

C = 011110011000101

3
1
1
1
2
1
1
2
3
3

⇒

R[i]

Both steps (Huffman & MTF) are easy to reverse.

8.4.2 Run-Length Encoding

We can also directly exploit that T bwt consists of many equal-letter runs. Each such run a` can be
encoded as a pair (a, `) with a ∈ Σ, ` ∈ [1, n].

Example 10.

T BWT = CCCCAAAC$A
1 2 3 4 5 6 7 8 9 10

⇒ RLE(T BWT)=(C,4),(A,4),(C,1),($,1),(A,1)

28

9 Backwards Search and FM-Indices

We are now going to explore how the BW-transformed text is helpful for (indexed) pattern match-
ing. Indices building on the BWT are called FM-indices, most likely in honor of their inventors
P. Ferragina and G. Manzini. From now on, we shall always assume that the alphabet Σ is good-
natured: σ = o(n/ log σ).

9.1 Recommended Reading

• G. Navarro and V. Mäkinen: Compressed Full-Text Indexes. ACM Computing Surveys 39(1),
Article no. 2 (61 pages), 2007. Sect. 4.1, 4.2, 5.1, 5.4, 6.1, and 9.1.

9.2 Model of Computation and Space Measurement

For the rest of this lecture, we work with the word-RAM model of computation. This means that
we have a processor with registers of width w (usually w = 32 or w = 64), where usual arithmetic
operations (additions, shifts, comparisons, etc.) on w-bit wide words can be computed in constant
time. Note that this matches all current computer architectures. We further assume that n, the
input size, satisfies n ≤ 2w, for otherwise we could not even address the whole input.

From now on, we measure the space of all data structures in bits instead of words, in order
to be able to differentiate between the various text indexes. For example, an array of n numbers
from the range [1, n] occupies ndlog ne bits, as each array cell stores a binary number consisting of
dlog ne bits. As another example, a length-n text over an alphabet of size σ occupies ndlog σe bits.
In this light, all text indexes we have seen so far (suffix trees, suffix arrays, suffix trays) occupy
O(n log n+ n log σ) bits. Note that the difference between log n and log σ can be quite large, e. g.,
for the human genome with σ = 4 and n = 3.4× 109 we have log σ = 2, whereas log n ≈ 32. So the
suffix array occupies about 16 times more memory than the genome itself!

9.3 Backward Search

We first focus our attention on the counting problem (p. 2); i.e., on finding the number of occurrences
of a pattern P1...m in T1...n. Recall from Chapter 8 that

• A denotes T ’s suffix array.

• L/F denotes the first/last row of the bwt-matrix.

• lf(·) denotes the last-to-front mapping.

• C(a) denotes the number of occurrences in T of characters lexicographically smaller than
a ∈ Σ.

• occ(a, i) denotes the number of occurrences of a in L[1, i].

Our aim is identify the interval of P in A by searching P from right to left (= backwards).
To this end, suppose we have already matched Pi+1...m, and know that the suffixes starting with
Pi+1...m form the interval [si+1, ei+1] in A. In a backwards search step, we wish to calculate the
interval [si, ei] of Pi...m. First note that [si, ei] must be a sub-interval of [C(Pi) + 1, C(Pi + 1)],
where (Pi + 1) denotes the character that follows Pi in Σ.

29

A =

C(Pi) + 1 C(Pi + 1)si ei ei+1si+1

Pi...m
Pi+1...m

PiPi F

backwards search step

So we need to identify, from those suffixes starting with Pi, those which continue with Pi+1...m.
Looking at row L in the range from si+1 to ei+1, we see that there are exactly ei − si + 1 many
positions j ∈ [si+1, ei+1] where L[j] = Pi.

A =

ei+1si+1

Pi+1...m

F

L

= Pi = Pi

6= Pi

From the BWT decompression algorithm, we know that characters preserve the same order in
F and L. Hence, if there are x occurrences of Pi before si+1 in L, then si will start x positions
behind C(Pi) + 1. This x is given by occ(Pi, si+1 − 1). Likewise, if there are y occurrences of Pi
within L[si+1, ei+1], then ei = si + y − 1. Again, y can be computed from the occ-function.

A =

C(Pi) + 1 C(Pi + 1)si ei ei+1si+1

Pi...m

Pi+1...m
PiPi F

L

= Pi = Pi

= occ(Pi, si+1 − 1)

30

Algorithm 5: function backwards-search(P1...m)

s← 1; e← n;1

for i = m. . . 1 do2

s← C(Pi) + occ(Pi, s− 1) + 1;3

e← C(Pi) + occ(Pi, e);4

if s > e then5

return “no match”;6

end7

end8

return [s, e];9

This gives rise to the following, elegant algorithm for backwards search:
The reader should compare this to the “normal” binary search algorithm in suffix arrays. Apart

from matching backwards, there are two other notable deviations:

1. The suffix array A is not accessed during the search.

2. There is no need to access the input text T .

Hence, T and A can be deleted once T bwt has been computed. It remains to show how array C
and occ are implemented. Array C is actually very small and can be stored plainly using σ log n
bits.1 Because σ = o(n/ log n), |C| = o(n) bits. For occ, we have several options that are explored
in the rest of this chapter. This is where the different FM-Indices deviate from each other. In fact,
we will see that there is a natural trade-off between time and space: using more space leads to a
faster computation of the occ-values, while using less space implies a higher query time.

Theorem 31. With backwards search, we can solve the counting problem in O(m·tocc) time, where
tocc denotes the time to answer an occ(·)-query.

9.4 First Ideas for Implementing Occ

For answering occ(c, i), there are two simple possibilities:

1. Scan L every time an occ(·)-query has to be answered. This occupies no space, but needs
O(n) time for answering a single occ(·)-query, leading to a total query time of O(mn) for
backwards search.

2. Store all answers to occ(c, i) in a two-dimensional table. This table occupies O(nσ log n) bits
of space, but allows constant-time occ(·)-queries. Total time for backwards search is optimal
O(m).

For more more practical implementation between these two extremes, let us define the following:

Definition 26. Given a bit-vector B[1, n], rank1(B, i) counts the number of 1’s in B’s prefix B[1, i].
Operation rank0(B, i) is defined similarly for 0-bits.

1More precisely, we should say σdlogne bits, but we will usually omit floors and ceilings from now on.

31

We shall see presently that a bit-vector B, together with additional information for constant-
time rank-operations, can be stored in n+ o(n) bits. This can be used as follows for implementing
occ: For each character c ∈ Σ, store an indicator bit vector Bc[1, n] such that Bc[i] = 1 iff L[i] = c.
Then

occ(c, i) = rank1(Bc, i) .

The total space for all σ indicator bit vectors is thus σn + o(σn) bits. Note that for reporting
queries, we still need the suffix array to output the values in A[s, e] after the backwards search.

Theorem 32. With backwards search and constant-time rank operations on bit-vectors, we can
answer counting queries in optimal O(m) time. The space (in bits) is σn+ o(σn) + σ log n.

Example 11.

L = CCCCAAAC$A

B$ = 0000000010
BA = 0000111001
BC = 1111000100

1 2 3 4 5 6 7 8 9 10

9.5 Compact Data Structures on Bit Vectors

We now show that a bit-vector B of length n can be augmented with a data structure of size o(n)
bits such that rank-queries can be answered in O(1) time. First note that

rank0(B, i) = i− rank1(B, i) ,

so considering rank1 will be enough.
We conceptually divide the bit-vector B into blocks of length s = b logn2 c and super-blocks of

length s′ = s2 = Θ(log2 n).

s

s′

B =

The idea is to decompose a rank1-query into 3 sub-queries that are aligned with the block- or
super-block-boundaries. To this end, we store three types of arrays:

1. For all of the b ns′ c super-blocks, M ′[i] stores the number of 1’s from B’s beginning up to the
end of the i’th superblock. This table needs order of

n/s′︸︷︷︸
#superblocks

× log n︸︷︷︸
value from [1,n]

= O

(
n

log n

)
= o(n)

bits.

32

2. For all of the bns c blocks, M [i] stores the number of 1’s from the beginning of the superblock
in which block i is contained up to the end of the i’th block. This needs order of

n/s︸︷︷︸
#blocks

× log s′︸ ︷︷ ︸
value from [1,s′]

= O

(
n log log n

log n

)
= o(n)

bits of space.

3. For all bit-vectors V of length s and all 1 ≤ i ≤ s, P [V][i] stores the number of 1-bits in

V [1, i]. Because there are only 2s = 2
logn
2 such vectors V , the space for table P is order of

2
logn
2︸ ︷︷ ︸

#possible blocks

× s︸︷︷︸
#queries

× log s︸︷︷︸
value from [1,s]

= O
(√
n log n log log n

)
= o(n)

bits.

Example 12.

B = 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0

M ′ = 6 10 14
M = 1 3 6 0 3 4 1 3 4

s = 3 s′ = 9

000 0 0 0
001 0 0 1
010 0 1 1
011 0 1 2
100 1 1 1
101 1 1 2
110 1 2 2
111 1 2 3

1 2 3V
iP :

A query rank1(B, i) is then decomposed into 3 sub-queries, as seen in the following picture:

B =

1 2 3 i

rank1(1, i)

1© superblock query: precomputed in M ′

2© block-query:
precomp. in M

3© in-block-query:
precomp. in P

33

Thus, computing the block number as q = b i−1s c, and the super-block number as q′ = b i−1s′ c,
we can answer

rank1(B, i) = M ′[q′] +M [q] + P [B[qs+ 1, (q + 1)s]︸ ︷︷ ︸
i′s block

] [i− qs]︸ ︷︷ ︸
index in block

in constant time.

Example 13. Continuing the example above, we answer rank1(B, 17) as follows: the block number
is q = b17−13 c = 5, and the super-block number is q′ = b17−19 c = 1. Further, i’s block is B[5 × 3 +
1, 6 × 3] = B[16, 18] = 001, and the index in that block is 17 − 5 × 3 = 2. Hence, rank1(B, 17) =
M ′[1] +M [5] + P [001][2] = 6 + 3 + 0 = 9.

This finishes the description of the data structure for O(1) rank-queries. We summarize this
section in the following theorem.

Theorem 33. An n-bit vector B can be augmented with data structures of size o(n) bits such that
rankb(B, i) can be answered in constant time (b ∈ {0, 1}).

9.6 Wavelet Trees

Armed with constant-time rank-queries, we now develop a more space-efficient implementation of
the occ-function, sacrificing the optimal query time. The idea is to use a wavelet tree on the
BW-transformed text.

The wavelet tree of a sequence L[1, n] over an alphabet Σ[1, σ] is a balanced binary search
tree of height O(log σ). It is obtained as follows. We create a root node v, where we divide Σ
into two halves Σl = Σ[1, dσ2 e] and Σr = Σ[dσ2 e + 1, σ] of roughly equal size. Hence, Σl holds
the lexicographically first half of characters of Σ, and Σr contains the other characters. At v we
store a bit-vector Bv of length n (together with data structures for O(1) rank-queries), where a ′0′

of position i indicates that character L[i] belongs to Σl, and a ′1′ indicates the it belongs to Σr.
This defines two (virtual) sequences Lv and Rv, where Lv is obtained from L by concatenating all
characters L[i] where Bv[i] = 0, in the order as they appear in L. Sequence Rv is obtained in a
similar manner for positions i with Bv[i] = 1. The left child lv is recursively defined to be the root
of the wavelet tree for Lv, and the right child rv to be the root of the wavelet tree for Rv. This
process continues until a sequence consists of only one symbol, in which case we create a leaf.

Example 14.

L=CCCCAAAC$A

CCCCAAAC$A
1 1 1 1 0 0 0 1 0 0

AAA$A
1 1 1 0 1

CCCCC

$ AAAA

⇒
WT

11101

Σl = {$,A} Σr = {C}

Σl = {$} Σr = {A}

Σ ={$,A,C}

1111000100

34

Note that the sequences themselves are not stored explicitly; node v only stores a bit-vector Bv
and structures for O(1) rank-queries.

Theorem 34. The wavelet tree for a sequence of length n over an alphabet of size σ can be stored
in n log σ × (1 + o(1)) bits.

Proof : We concatenate all bit-vectors at the same depth d into a single bit-vector Bd of length
n, and prepare it for O(1)-rank-queries (see Sect. 9.5). Hence, at any level, the space needed is
n + o(n) bits. Because the depth of the tree is dlog σe the claim on the space follows. In order to
“know” the sub-interval of a particular node v in the concatenated bit-vector Bd at level d, we can
store two indices αv and βv such that Bd[αv, βv] is the bit-vector Bv associated to node v. This
accounts for additional O(σ log n) bits. Then a rank-query is answered as follows (b ∈ {0, 1}):

rankb(Bv, i) = rankb(Bd, αv + i− 1)− rankb(Bd, αv − 1) ,

where it is assumed that i ≤ βv − αv + 1, for otherwise the result is not defined.
How does the wavelet tree help for implementing the occ-function? Suppose we want to

compute occ(c, i), i. e., the number of occurrences of c ∈ Σ in L[1, i]. We start at the root r of
the wavelet tree, and check if c belongs to the first or to the second half of the alphabet. In the
first case, we know that the c’s are “stored” in the left child of the root, namely Lr. Hence, the
number of c’s in L[1, i] corresponds to the number of c’s in Lr[1, rank0(Br, i)]. If, on the hand, c
belongs to the second half of the alphabet, we know that the c’s are “stored” in the subsequence
Rr that corresponds to the right child of r, and hence compute the number of occurrences of c in
Rr[1, rank1(Br, i)] as the number of c’s in L[1, i]. This leads to the following recursive procedure
for computing occ(c, i), to be invoked with WT-occ(c, i, 1, σ, r), where r is the root of the wavelet
tree. (Recall that we assume that the characters in Σ can be accessed as Σ[1], . . . ,Σ[σ].)

Algorithm 6: function WT-occ(c, i, σl, σr, v)

if σl = σr then1

return i;2

end3

σm = bσl+σr2 c;4

if c ≤ Σ[σm] then5

return WT-occ(c, rank0(Bv, i), σl, σm, lv);6

else7

return WT-occ(c, rank1(Bv, i), σm + 1, σr, rv);8

end9

Due to the depth of the wavelet tree, the time for WT-occ(·) is O(log σ). This leads to the
following theorem.

Theorem 35. With backward-search and a wavelet-tree on T bwt, we can answer counting queries
in O(m log σ) time. The space (in bits) is

O(σ log n)︸ ︷︷ ︸
|C|+ space for αv ’s

+ n log σ︸ ︷︷ ︸
wavelet tree

+ o(n log σ)︸ ︷︷ ︸
rank data structure

.

35

10 Inside Google

10.1 Recommended Reading

• S. Muthukrishnan: Efficient Algorithms for Document Retrieval Problems. Proc. of the 13th
Annual Symposium on Discrete Algorithms, 657–666. ACM/SIAM, 2002.

10.2 The Task

You are given a collection S = {s1, . . . , sm} of sequences si ∈ Σ∗ (web pages, protein or DNA-
sequences, or the like). Your task is to build an index on S such that the following type of on-line
queries can be answered efficiently :

given: a pattern P ∈ Σ∗.

return: all j ∈ [1,m] such that sj contains P .

Exercise: What has this to do with Google?

10.3 The Straight-Forward Solution

Define a string
S = s1#s2# . . .#sm#

of length n :=
∑

1≤i≤m(|si| + 1) = m +
∑

1≤i≤m |si|. Build the suffix array A on S. In an array
D[1, n] remember from which string in S the corresponding suffix comes from:

D[i] = j iff

j−1∑
k=1

(|sk|+ 1) < A[i] ≤
j∑

k=1

(|sk|+ 1) .

When a query pattern P arrives, first locate the interval [`, r] of P in A. Then output all numbers
in D[`, r], removing the duplicates (how?).

10.4 The Problem

Even if we can efficiently remove the duplicates, the above query algorithm is not output sensitive.
To see why, consider the situation where P occurs many (say x) times in s1, but never in sj for
j > 1. Then the query takes O(|P | + x) time, just to output one sequence identifier (namely nr.
1). Note that x can be as large as Θ(n), e.g., if |s1| ≥ n

2 .

10.5 An Optimal Solution

The following algorithm solves the queries in optimal O(|P |+d) time, where d denotes the number
of sequences in S where P occurs.

We set up a new array E[1, n] such that E[i] points to the nearest previous occurrence of D[i]
in D:

E[i] =

{
j if there is a j < i with D[j] = D[i], and D[k] 6= D[i] for all j < k < i ,
−1 if no such j exists.

36

It is easy to compute E with a single left-to-right scan of D. We further process E for constant-time
RMQs.

When a query pattern P arrives, we first locate P ’s interval [`, r] in A in O(|P |) time (as before).
We then call report(`, r), which is a procedure defined as follows.

Algorithm 7: Document Reporting

procedure report (i, j)1

m← rmqE(i, j)2

if E[m] ≤ ` then3

output D[m]4

if m− 1 ≥ i then report(i,m− 1)5

if m+ 1 ≤ j then report(m+ 1, j)6

end7

The claimed O(d) running time of the call to report(`, r) relies on the following observation.
Consider the range [`, r]. Note that P is a prefix of SA[i]...n for all ` ≤ i ≤ r. The idea is that the
algorithm visits and outputs only those suffixes SA[i]...n with i ∈ [`, r] such that the corresponding
suffix σi of sD[i] (σi = SA[i]...e, where e =

∑
1≤j≤D[i](|sj |+ 1) is the end position of sD[j] in S) is the

lexicographically smallest among those suffixes of sD[i] that are prefixed by P . Because the suffix
array orders the suffixes lexicographically, we must have E[i] ≤ ` for such suffixes σi. Further, there
is at most one such position i in [`, r] for each string sj . Because the recursion searches the whole
range [`, r] for such positions i, no string sj ∈ S is missed by the procedure.

Finally, when the recursion stops (i.e., E[m] > `), because E[m] is the minimum in E[i, j], we
must have that the identifiers of the strings sD[k] for all k ∈ [i, j] have already been output in a
previous call to report(i′, j′) for some ` ≤ i′ ≤ j′ < i. Hence, we can safely stop the recursion at
this point.

37

