
Advanced Data Structures

Lecture 11: BSP Trees and Recap

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2022-07-18-09:14

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

Important
assume now two points have the same x- or
y -coordinate

generalize 1-dimensional idea
1-dimensional

split number of points in half at each node
points consist of one value

2-dimensional
points consist of two values
split number of points in half w.r.t. one value
switch between values depending on depth

2/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap: 2-Dimensional Rectangular Range Searching

hidden surface removal

which pixel is visible

important for rendering

3/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Motivation

transform scene such that viewing direction is
positive z-direction

consider objects in scene in arbitrary order
maintain two buffers

frame buffer � currently shown pixel
z-buffer � z-coordinate of object shown

compare z-coordinate of z-buffer and object

first sort object in depth-order

depth-order may not always exist �

how to efficiently sort objects?

4/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

z-Buffer Algorithm

transform scene such that viewing direction is
positive z-direction

consider objects in scene in arbitrary order
maintain two buffers

frame buffer � currently shown pixel
z-buffer � z-coordinate of object shown

compare z-coordinate of z-buffer and object

first sort object in depth-order

depth-order may not always exist �

how to efficiently sort objects?

4/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

z-Buffer Algorithm

partition space using hyperplanes

binary partition � similar to kd-tree

hyperplanes create half-spaces and cut objects
into fragments

h+ = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd > 0}
h− = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd < 0}

each split creates two nodes in a tree

if number of objects in space is one: leaf

otherwise: inner node

5/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

partition space using hyperplanes

binary partition � similar to kd-tree

hyperplanes create half-spaces and cut objects
into fragments

h+ = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd > 0}
h− = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd < 0}

each split creates two nodes in a tree

if number of objects in space is one: leaf

otherwise: inner node

5/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

partition space using hyperplanes

binary partition � similar to kd-tree

hyperplanes create half-spaces and cut objects
into fragments

h+ = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd > 0}
h− = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd < 0}

each split creates two nodes in a tree

if number of objects in space is one: leaf

otherwise: inner node

5/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

partition space using hyperplanes

binary partition � similar to kd-tree

hyperplanes create half-spaces and cut objects
into fragments

h+ = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd > 0}
h− = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd < 0}

each split creates two nodes in a tree

if number of objects in space is one: leaf

otherwise: inner node

5/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

partition space using hyperplanes

binary partition � similar to kd-tree

hyperplanes create half-spaces and cut objects
into fragments

h+ = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd > 0}
h− = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd < 0}

each split creates two nodes in a tree

if number of objects in space is one: leaf

otherwise: inner node

5/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

partition space using hyperplanes

binary partition � similar to kd-tree

hyperplanes create half-spaces and cut objects
into fragments

h+ = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd > 0}
h− = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd < 0}

each split creates two nodes in a tree

if number of objects in space is one: leaf

otherwise: inner node

5/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

partition space using hyperplanes

binary partition � similar to kd-tree

hyperplanes create half-spaces and cut objects
into fragments

h+ = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd > 0}
h− = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd < 0}

each split creates two nodes in a tree

if number of objects in space is one: leaf

otherwise: inner node

5/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

partition space using hyperplanes

binary partition � similar to kd-tree

hyperplanes create half-spaces and cut objects
into fragments

h+ = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd > 0}
h− = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd < 0}

each split creates two nodes in a tree

if number of objects in space is one: leaf

otherwise: inner node

5/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

for leaf: store object/fragment

for inner node v : store hyperplane hv and the
objects contained in hv

left child represents objects in upper half-space
h+

right child represents objects in lower
half-space h−

space of BSP tree is number of objects stored
at all nodes

what about fragments?

too many fragments can make the tree big

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

for leaf: store object/fragment

for inner node v : store hyperplane hv and the
objects contained in hv

left child represents objects in upper half-space
h+

right child represents objects in lower
half-space h−

space of BSP tree is number of objects stored
at all nodes

what about fragments?

too many fragments can make the tree big

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

for leaf: store object/fragment

for inner node v : store hyperplane hv and the
objects contained in hv

left child represents objects in upper half-space
h+

right child represents objects in lower
half-space h−

space of BSP tree is number of objects stored
at all nodes

what about fragments?

too many fragments can make the tree big

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

for leaf: store object/fragment

for inner node v : store hyperplane hv and the
objects contained in hv

left child represents objects in upper half-space
h+

right child represents objects in lower
half-space h−

space of BSP tree is number of objects stored
at all nodes

what about fragments?

too many fragments can make the tree big

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

for leaf: store object/fragment

for inner node v : store hyperplane hv and the
objects contained in hv

left child represents objects in upper half-space
h+

right child represents objects in lower
half-space h−

space of BSP tree is number of objects stored
at all nodes

what about fragments?

too many fragments can make the tree big

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

for leaf: store object/fragment

for inner node v : store hyperplane hv and the
objects contained in hv

left child represents objects in upper half-space
h+

right child represents objects in lower
half-space h−

space of BSP tree is number of objects stored
at all nodes

what about fragments?

too many fragments can make the tree big

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

sorting points for kd-trees worked well

BSP-tree is used to sort objects in dept-order
auto-partitioning uses splitters through objects

2-dimensional: line through line segments
3-dimensional: half-plane through polygons

7/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Auto-Partitioning

consider view point pview

traverse through tree and always recurse on
half-space that does not contain pview first

then scan-convert object contained in node

then recurse on half-space that contains pview

pview

8/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Painter’s Algorithm

use auto-partitioning

construction similar to construction of kd-tree
store all necessary information

hyperplane
objects in hyperplane

how to determine next hyperplane?

creating fragments increases size of BSP tree

let s be object and ℓ(s) line through object

order matters

9/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (1/3)

use auto-partitioning

construction similar to construction of kd-tree
store all necessary information

hyperplane
objects in hyperplane

how to determine next hyperplane?

creating fragments increases size of BSP tree

let s be object and ℓ(s) line through object

order matters

9/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (1/3)

use auto-partitioning

construction similar to construction of kd-tree
store all necessary information

hyperplane
objects in hyperplane

how to determine next hyperplane?

creating fragments increases size of BSP tree

let s be object and ℓ(s) line through object

order matters

9/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (1/3)

use auto-partitioning

construction similar to construction of kd-tree
store all necessary information

hyperplane
objects in hyperplane

how to determine next hyperplane?

creating fragments increases size of BSP tree

let s be object and ℓ(s) line through object

order matters

9/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (1/3)

Lemma: Number Line Fragments
The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(n log n)

Proof (Sketch)
distance of lines distsi (sj) =

segments inters. ℓ(si)

between si and sj ℓ(si) inters. sj

∞ otherwise

example on the board �

Proof (Sketch, cnt.)
let distsi (sj) = k and sj1 , . . . , sjk be segments
between si and sj

what is the probability that ℓ(si) cuts sj?

this happens if no sjx is processed before si

since order is random

P[ℓ(si) cuts sj] ≤
1

distsi (sj) + 2

10/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (2/3)

Lemma: Number Line Fragments
The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(n log n)

Proof (Sketch)
distance of lines distsi (sj) =

segments inters. ℓ(si)

between si and sj ℓ(si) inters. sj

∞ otherwise

example on the board �

Proof (Sketch, cnt.)
let distsi (sj) = k and sj1 , . . . , sjk be segments
between si and sj

what is the probability that ℓ(si) cuts sj?

this happens if no sjx is processed before si

since order is random

P[ℓ(si) cuts sj] ≤
1

distsi (sj) + 2

10/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (2/3)

Lemma: Number Line Fragments
The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(n log n)

Proof (Sketch)
distance of lines distsi (sj) =

segments inters. ℓ(si)

between si and sj ℓ(si) inters. sj

∞ otherwise

example on the board �

Proof (Sketch, cnt.)
let distsi (sj) = k and sj1 , . . . , sjk be segments
between si and sj

what is the probability that ℓ(si) cuts sj?

this happens if no sjx is processed before si

since order is random

P[ℓ(si) cuts sj] ≤
1

distsi (sj) + 2

10/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (2/3)

Proof (Sketch, cnt.)
expected number of cuts

E[# cuts generated by si] ≤
∑
j ̸=i

1
distsi (sj) + 2

≤ 2
n−2∑
k=0

1
k + 2

≤ 2 ln n

all lines generate at most 2n ln n fragments

Lemma: BSP Construction
A BSP tree of size O(n log n) can be computed in
expected time O(n2 log n)

Proof (Sketch)
computing permutation in linear time

construction is linear in number of fragments to
be considered

number of fragments in subtree is bounded by n

number of recursions is n log n

11/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (3/3)

Proof (Sketch, cnt.)
expected number of cuts

E[# cuts generated by si] ≤
∑
j ̸=i

1
distsi (sj) + 2

≤ 2
n−2∑
k=0

1
k + 2

≤ 2 ln n

all lines generate at most 2n ln n fragments

Lemma: BSP Construction
A BSP tree of size O(n log n) can be computed in
expected time O(n2 log n)

Proof (Sketch)
computing permutation in linear time

construction is linear in number of fragments to
be considered

number of fragments in subtree is bounded by n

number of recursions is n log n

11/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (3/3)

Proof (Sketch, cnt.)
expected number of cuts

E[# cuts generated by si] ≤
∑
j ̸=i

1
distsi (sj) + 2

≤ 2
n−2∑
k=0

1
k + 2

≤ 2 ln n

all lines generate at most 2n ln n fragments

Lemma: BSP Construction
A BSP tree of size O(n log n) can be computed in
expected time O(n2 log n)

Proof (Sketch)
computing permutation in linear time

construction is linear in number of fragments to
be considered

number of fragments in subtree is bounded by n

number of recursions is n log n
11/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (3/3)

This Lecture
BSP trees

Next Lecture
your presentations

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA

retroactive

PQ

Kd- & Range

Tree

12/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
BSP trees

Next Lecture
your presentations

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA

retroactive

PQ

Kd- & Range

Tree

12/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

bit vectors

succint trees

dynamic bit vectors and trees

predecessor and RMQ queries

suffix array and string B-tree

compressed suffix array

persistent data structures

retroactive data structures

orthogonal range search

binary space partitions

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap

bit vectors

succint trees

dynamic bit vectors and trees

predecessor and RMQ queries

suffix array and string B-tree

compressed suffix array

persistent data structures

retroactive data structures

orthogonal range search

binary space partitions

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap

bit vectors

succint trees

dynamic bit vectors and trees

predecessor and RMQ queries

suffix array and string B-tree

compressed suffix array

persistent data structures

retroactive data structures

orthogonal range search

binary space partitions

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap

bit vectors

succint trees

dynamic bit vectors and trees

predecessor and RMQ queries

suffix array and string B-tree

compressed suffix array

persistent data structures

retroactive data structures

orthogonal range search

binary space partitions

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap

bit vectors

succint trees

dynamic bit vectors and trees

predecessor and RMQ queries

suffix array and string B-tree

compressed suffix array

persistent data structures

retroactive data structures

orthogonal range search

binary space partitions

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap

bit vectors

succint trees

dynamic bit vectors and trees

predecessor and RMQ queries

suffix array and string B-tree

compressed suffix array

persistent data structures

retroactive data structures

orthogonal range search

binary space partitions

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap

bit vectors

succint trees

dynamic bit vectors and trees

predecessor and RMQ queries

suffix array and string B-tree

compressed suffix array

persistent data structures

retroactive data structures

orthogonal range search

binary space partitions

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap

bit vectors

succint trees

dynamic bit vectors and trees

predecessor and RMQ queries

suffix array and string B-tree

compressed suffix array

persistent data structures

retroactive data structures

orthogonal range search

binary space partitions

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap

bit vectors

succint trees

dynamic bit vectors and trees

predecessor and RMQ queries

suffix array and string B-tree

compressed suffix array

persistent data structures

retroactive data structures

orthogonal range search

binary space partitions

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap

bit vectors

succint trees

dynamic bit vectors and trees

predecessor and RMQ queries

suffix array and string B-tree

compressed suffix array

persistent data structures

retroactive data structures

orthogonal range search

binary space partitions

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap

