

Advanced Data Structures

Lecture 11: BSP Trees and Recap

Florian Kurpicz

Recap: 2-Dimensional Rectangular Range Searching

Important

- assume now two points have the same x- or y-coordinate
- generalize 1-dimensional idea
- 1-dimensional
 - split number of points in half at each node
 - points consist of one value
- 2-dimensional
 - points consist of two values
 - split number of points in half w.r.t. one value
 - switch between values depending on depth

Motivation

- hidden surface removal
- which pixel is visible
- important for rendering

z-Buffer Algorithm

- transform scene such that viewing direction is positive z-direction
- consider objects in scene in arbitrary order
- maintain two buffers
 - frame buffer () currently shown pixel
 - z-buffer ① z-coordinate of object shown
- compare z-coordinate of z-buffer and object

z-Buffer Algorithm

- transform scene such that viewing direction is positive z-direction
- consider objects in scene in arbitrary order
- maintain two buffers
 - frame buffer () currently shown pixel
 - z-buffer ① z-coordinate of object shown
- compare z-coordinate of z-buffer and object
- first sort object in depth-order
- depth-order may not always exist <a>
- how to efficiently sort objects?

- partition space using hyperplanes
- binary partition of similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

- partition space using hyperplanes
- binary partition of similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

$$h^+ = \{(x_1, \ldots, x_d) \colon a_1 x_1 + \cdots + a_d x_d > 0\}$$

•
$$h^- = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d < 0\}$$

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

$$h^+ = \{(x_1, \ldots, x_d) \colon a_1 x_1 + \cdots + a_d x_d > 0\}$$

•
$$h^- = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d < 0\}$$

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

•
$$h^+ = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d > 0\}$$

•
$$h^- = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d < 0\}$$

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

•
$$h^+ = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d > 0\}$$

•
$$h^- = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d < 0\}$$

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

•
$$h^+ = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d > 0\}$$

•
$$h^- = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d < 0\}$$

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

•
$$h^+ = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d > 0\}$$

•
$$h^- = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d < 0\}$$

- each split creates two nodes in a tree
- if number of objects in space is one: leaf
- otherwise: inner node

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h⁺
- right child represents objects in lower half-space h⁻

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h⁺
- right child represents objects in lower half-space h⁻

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h⁺
- right child represents objects in lower half-space h⁻

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h⁺
- right child represents objects in lower half-space h⁻

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h⁺
- right child represents objects in lower half-space h⁻

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h⁺
- right child represents objects in lower half-space h⁻
- space of BSP tree is number of objects stored at all nodes
- what about fragments?
- too many fragments can make the tree big

Auto-Partitioning

- sorting points for kd-trees worked well
- BSP-tree is used to sort objects in dept-order
- auto-partitioning uses splitters through objects
 - 2-dimensional: line through line segments
 - 3-dimensional: half-plane through polygons

Painter's Algorithm

- consider view point p_{view}
- traverse through tree and always recurse on half-space that does not contain p_{view} first
- then scan-convert object contained in node
- then recurse on half-space that contains p_{view}

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree
- let s be object and $\ell(s)$ line through object
- order matters

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree
- let s be object and $\ell(s)$ line through object
- order matters

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree
- let s be object and $\ell(s)$ line through object
- order matters

Lemma: Number Line Fragments

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$

Lemma: Number Line Fragments

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$

Proof (Sketch

```
distance of lines dist_{s_i}(s_j) = \begin{cases} \# \text{ segments inters. } \ell(s_i) \\ \text{between } s_i \text{ and } s_j \\ \infty \end{cases} \qquad \ell(s_i) \text{ inters. } s_j
```

example on the board <a>П

Lemma: Number Line Fragments

example on the board <a>=

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$

Proof (Sketch)

Proof (Sketch, cnt.)

- let $dist_{s_i}(s_j) = k$ and s_{j_1}, \ldots, s_{j_k} be segments between s_i and s_j
- what is the probability that $\ell(s_i)$ cuts s_i ?
- this happens if no s_{i_x} is processed before s_i
- since order is random

$$\mathbb{P}[\ell(s_i) \text{ cuts } s_j] \leq \frac{1}{\textit{dist}_{s_i}(s_i) + 2}$$

Proof (Sketch, cnt.)

expected number of cuts

$$\mathbb{E}[exttt{# cuts generated by } s_i] \leq \sum_{j \neq i} rac{1}{ exttt{dist}_{s_i}(s_j) + 2} \leq 2 \sum_{k=0}^{n-2} rac{1}{k+2} \leq 2 \ln n$$

all lines generate at most 2n ln n fragments

11/13

Proof (Sketch, cnt.)

expected number of cuts

$$\mathbb{E}[\text{\# cuts generated by } s_i] \leq \sum_{j \neq i} \frac{1}{\textit{dist}_{s_i}(s_j) + 2} \leq 2 \sum_{k=0}^{n-2} \frac{1}{k+2} \leq 2 \ln n$$

all lines generate at most 2*n* ln *n* fragments

Lemma: BSP Construction

A BSP tree of size $O(n \log n)$ can be computed in expected time $O(n^2 \log n)$

Proof (Sketch, cnt.)

expected number of cuts

$$\mathbb{E}[\text{\# cuts generated by } s_i] \leq \sum_{j \neq i} \frac{1}{\textit{dist}_{s_i}(s_j) + 2} \leq 2 \sum_{k=0}^{n-2} \frac{1}{k+2} \leq 2 \ln n$$

all lines generate at most 2n ln n fragments

Lemma: BSP Construction

A BSP tree of size $O(n \log n)$ can be computed in expected time $O(n^2 \log n)$

Proof (Sketch)

- computing permutation in linear time
- construction is linear in number of fragments to be considered
- number of fragments in subtree is bounded by n
- number of recursions is n log n

This Lecture

BSP trees

Conclusion and Outlook

This Lecture

BSP trees

Next Lecture

your presentations

bit vectors

- bit vectors
- succint trees

13/13

- bit vectors
- succint trees
- dynamic bit vectors and trees

- bit vectors
- succint trees
- dynamic bit vectors and trees
- predecessor and RMQ queries

- bit vectors
- succint trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree

- bit vectors
- succint trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
- compressed suffix array

- bit vectors
- succint trees

Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap

- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
- compressed suffix array
- persistent data structures

- bit vectors
- succint trees

Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap

- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
- compressed suffix array
- persistent data structures
- retroactive data structures

- bit vectors
- succint trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
- compressed suffix array
- persistent data structures
- retroactive data structures
- orthogonal range search

- bit vectors
- succint trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
- compressed suffix array
- persistent data structures
- retroactive data structures
- orthogonal range search
- binary space partitions