KIT

Karlsruhe Institute of Technology

Advanced Data Structures

Lecture 11: BSP Trees and Recap
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @ ®®: www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2022-07-18-09:14

KIT — The Research University in the Helmholtz Association WWW. kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

Ui

Recap: 2-Dimensional Rectangular Range Searching P

Important

® assume now two points have the same x- or
y-coordinate

® generalize 1-dimensional idea B
@ 1-dimensional
|
& gsplit number of points in half at each node [
|
® points consist of one value I |
| |
a 2-dimensional L))
® points consist of two values : ‘
® split number of points in half w.r.t. one value
® switch between values depending on depth

2/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Motivation

® hidden surface removal
® which pixel is visible
® important for rendering

313 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

KIT

z-Buffer Algorithm

@ transform scene such that viewing direction is
positive z-direction

® consider objects in scene in arbitrary order

® maintain two buffers

a frame buffer & currently shown pixel
@ z-buffer @ z-coordinate of object shown

® compare z-coordinate of z-buffer and object

413 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

z-Buffer Algorithm

transform scene such that viewing direction is
positive z-direction

consider objects in scene in arbitrary order
maintain two buffers

a frame buffer & currently shown pixel
@ z-buffer @ z-coordinate of object shown

® compare z-coordinate of z-buffer and object

& first sort object in depth-order
® depth-order may not always exist £.-J
@ how to efficiently sort objects?

413 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

® partition space using hyperplanes
® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

513 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

® partition space using hyperplanes
® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

513 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}

513 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}

513 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}

513 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}

513 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}

513 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

BSP Trees (1/2) ﬂ(IT

® partition space using hyperplanes
® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

- {(X1a'-'7) aixi + - +adXd>0}
{(X1,...7):a1X1+"'+adXd<0}

® each split creates two nodes in a tree
a if number of objects in space is one: leaf
@ otherwise: inner node

513 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap

KIT

Karlsruhe Institute of Technology

N

Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap

KIT

Karlsruhe Institute of Technology

N

Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap

KIT

Karlsruhe Institute of Technology

N

Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap

KIT

Karlsruhe Institute of Technology

N

Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap

KIT

Karlsruhe Institute of Technology

N

Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2) ﬂ(IT

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™ B

® space of BSP tree is number of objects stored
at all nodes

® what about fragments?
® too many fragments can make the tree big

6/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Au tO' Pa rt i t i O n i n g Karlsruhe Institute of Technology

& sorting points for kd-trees worked well
® BSP-tree is used to sort objects in dept-order
® gquto-partitioning uses splitters through objects

® 2-dimensional: line through line segments
® 3-dimensional: half-plane through polygons

73 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Painter’s Algorithm

® consider view point pyiew

& traverse through tree and always recurse on
half-space that does not contain pyje first

& then scan-convert object contained in node
@ then recurse on half-space that contains pyiew

Pview

8/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (1/3)

use auto-partitioning

construction similar to construction of kd-tree
store all necessary information

® hyperplane
® objects in hyperplane

how to determine next hyperplane?

creating fragments increases size of BSP tree

913 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (1/3)

® use auto-partitioning
® construction similar to construction of kd-tree
@ store all necessary information

® hyperplane
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object
@ order matters

913 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (1/3)

® use auto-partitioning
® construction similar to construction of kd-tree
@ store all necessary information ,

® hyperplane
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object .
@ order matters y

913 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (1/3)

® use auto-partitioning N
® construction similar to construction of kd-tree N
@ store all necessary information .

® hyperplane N
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object
® order matters .

913 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (2/3)

The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(nlog n)

10/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (2/3)

The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(nlog n)

® distance of lines dists,(s;) =
segments inters. £(s;)
between s; and s; {(s;) inters. s;
00 otherwise

& example on the board

10/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (2/3)
The expected number of fragments generated when ® let dist;(sj)) = kand s;,, . . ., s, be segments
iterating through the line segments using a random between s; and s;

permutation is O(nlog n) = what is the probability that £(s;) cuts s;?

® this happens if no s;, is processed before s;

® since order is random
® distance of lines dists,(s;) =

segments inters. £(s;) P[¢(s;) cuts sj] <
between s; and s; {(s;) inters. s;

1
dists,(s;) + 2

00 otherwise

& example on the board

10/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (3/3)

@ expected number of cuts

1

E[# cuts generated by s;] < Z sty (5) 1 2 P
i

@ all lines generate at most 2nIn n fragments

1113 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (3/3)

@ expected number of cuts

1

E[# cuts generated by s;] < Z sty (5) 1 2 P
i

@ all lines generate at most 2nIn n fragments

A BSP tree of size O(nlog n) can be computed in
expected time O(n? log n)

1113 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Karlsruhe Institute of Technology

Constructing Planar BSP Trees (3/3) ﬂ(IT

@ expected number of cuts

1 S
E[# cuts generated by s;] < — <2 —— <2lnn
[9 / ’]—Zdists,(s,)+2— k42~
JAi k=0
@ all lines generate at most 2nIn n fragments
A BSP tree of size O(nlog n) can be computed in ® computing permutation in linear time

expected time O(n? log n) ® construction is linear in number of fragments to
be considered
® number of fragments in subtree is bounded by n

® number of recursions is nlog n
1113 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Conclusion and Outlook

This Lecture Advanced Data Structures

® BSP trees

retroactive A
PQ String B-tree | SA & LCP |
Kd- & Range ... CSA :
T | Successor | | RM |
static/dynamic static/dynamic
BV succ. trees

range min-max tree succ. graphs

1213 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

SKIT

Conclusion and Outlook

This Lecture Advanced Data Structures

= BSP trees retroactive q
PQ String B-tree | SA & LCP |
Next Lecture ;
® your presentations
Kd- & Range ... CSA
Tree | Successorl | RMQl
static/dynamic static/dynamic
BV succ. trees

range min-max tree succ. graphs

1213 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Recap

& bit vectors

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Recap

& bit vectors
® succint trees

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Recap

& bit vectors
® succint trees
® dynamic bit vectors and trees

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

Recap

13/13

& it vectors

® succint trees

® dynamic bit vectors and trees
® predecessor and RMQ queries

2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Recap

bit vectors
succint trees

[
[

® dynamic bit vectors and trees
® predecessor and RMQ queries
[

suffix array and string B-tree

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Recap

bit vectors

succint trees

dynamic bit vectors and trees
predecessor and RMQ queries
suffix array and string B-tree

compressed suffix array

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Recap

bit vectors
succint trees
dynamic bit vectors and trees

suffix array and string B-tree

[
[
a
® predecessor and RMQ queries
[
® compressed suffix array

a

persistent data structures

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Recap

bit vectors

succint trees

dynamic bit vectors and trees
predecessor and RMQ queries
suffix array and string B-tree
compressed suffix array
persistent data structures

retroactive data structures

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Recap

bit vectors

succint trees

dynamic bit vectors and trees
predecessor and RMQ queries
suffix array and string B-tree
compressed suffix array
persistent data structures
retroactive data structures

orthogonal range search

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

KIT

Recap

bit vectors

succint trees

dynamic bit vectors and trees
predecessor and RMQ queries
suffix array and string B-tree
compressed suffix array
persistent data structures
retroactive data structures
orthogonal range search

binary space partitions

13/13 2022-07-18 Florian Kurpicz | Advanced Data Structures | 11 BSP Trees & Recap Institute of Theoretical Informatics, Algorithm Engineering

