

Advanced Data Structures

Lecture 08: Temporal Data Structures 2

Florian Kurpicz

Organization

Exams

- 10.08.2022 and 29.09.2022
- write to blancani@kit.edu
 - full name
 - Matrikelnummer
 - PO version
 - date
- online or in person of depending on situation/personal preferences
- 18.07.2022 Q&A during last half of lecture

Organization

Exams

- 10.08.2022 and 29.09.2022
- write to blancani@kit.edu
 - full name
 - Matrikelnummer
 - PO version
 - date
- online or in person of depending on situation/personal preferences
- 18.07.2022 Q&A during last half of lecture

Evaluation

now

PINGO

https://pingo.scc.kit.edu/329558

lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Recap: Persistent Data Structures

lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Definition: Partial Persistence

Only the latest version can be updated

Definition: Full Persistence

Any version can be updated

Definition: Confluent Persistence

Like full persistence, but two versions can be combined to a new version

Definition: Functional

Nodes cannot be modified, only new nodes can be created

Recap: Persistent Data Structures

lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Retroactivity

- change in the past affects future
- make change in earlier version changes all later versions

Definition: Partial Persistence

Only the latest version can be updated

Definition: Full Persistence

Any version can be updated

Definition: Confluent Persistence

Like full persistence, but two versions can be combined to a new version

Definition: Functional

Nodes cannot be modified, only new nodes can be created

Operations

- INSERT(t, operation): insert operation at time t
- DELETE(t): delete operation at time t
- QUERY(t, query): ask query at time t
- for a priority queue updates are
 - insert
 - delete-min
- time is integer of for simplicity otherwise use order-maintenance data structure

Retroactive Data Structures

Operations

- INSERT(t, operation): insert operation at time t
- \blacksquare DELETE(t): delete operation at time t
- QUERY(t, query): ask query at time t
- for a priority queue updates are
 - insert
 - delete-min
- time is integer of for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for $t=\infty$ • now

Retroactive Data Structures

Operations

- INSERT(t, operation): insert operation at time t
- DELETE(t): delete operation at time t
- QUERY(t, query): ask query at time t
- for a priority queue updates are
 - insert
 - delete-min
- time is integer for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for $t=\infty$ \bullet now

Definition: Full Retroactivity

QUERY is allowed at any time t

Retroactive Data Structures

Operations

- INSERT(t, operation): insert operation at time t
- DELETE(t): delete operation at time t
- QUERY(t, query): ask query at time t
- for a priority queue updates are
 - insert
 - delete-min
- time is integer for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for $t=\infty$ 1 now

Definition: Full Retroactivity

QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity

INSERT, DELETE, and QUERY at any time *t* but also identify changed QUERY results

- commutative operations
 - insert and delete-min are not commutative
 - insert and delete are commutative
- invertible updates
 - operation op^{-1} such that $op^{-1}(op(\cdot)) = \emptyset$
 - DELETE becomes INSERT inverse operation
- makes partial retroactivity easy
- INSERT $(t, operation) = INSERT(\infty, operation)$
- DELETE(t, op) = INSERT (∞, op^{-1})

Easy Cases: Partial Retroactivity

- commutative operations
 - insert and delete-min are not commutative
 - insert and delete are commutative
- invertible updates
 - operation op^{-1} such that $op^{-1}(op(\cdot)) = \emptyset$
 - DELETE becomes INSERT inverse operation
- makes partial retroactivity easy
- INSERT $(t, operation) = INSERT(\infty, operation)$
- DELETE $(t, op) = INSERT(\infty, op^{-1})$

Partial Retroactivity

- hashing
- dynamic dictionaries
- array with updates only A[i]+=value

Definition: Search Problem

A search problem is a problem on a set S of objects with operations insert, delete, and query (x, S)

Definition: Search Problem

A search problem is a problem on a set S of objects with operations *insert*, *delete*, and *query*(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search problem, with

- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with *f* requiring *O*(1) time

Search Problems

Definition: Search Problem

A search problem is a problem on a set S of objects with operations *insert*, *delete*, and query(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search problem, with

- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with *f* requiring *O*(1) time
- which decomposable search problem have we seen PINGO

Search Problems

Definition: Search Problem

A search problem is a problem on a set S of objects with operations *insert*, *delete*, and query(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search problem, with

- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with *f* requiring *O*(1) time
- which decomposable search problem have we seen PINGO

- predecessor and successor search
- range minimum queries
- nearest neighbor
- point location
- ...

Search Problems

Definition: Search Problem

A search problem is a problem on a set S of objects with operations *insert*, *delete*, and *query*(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search problem, with

- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with f requiring O(1) time
- which decomposable search problem have we seen PINGO

- predecessor and successor search
- range minimum queries
- nearest neighbor
- point location
- these types of problems are also "easy"

Decomposable Search Problems: Full Retroactivity

Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where *m* is the number of operations

Decomposable Search Problems: Full Retroactivity

Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations

Proof (Sketch

- use balances search tree
- each leaf corresponds to an update
- node n corresponds to interval of time $[s_n, e_n]$
- if an object exists in the time interval [s, e], then it appears in all node n if $[s_n, e_n] \subseteq [s, e]$ if non of n's ancestors' are $\subseteq [s, e]$
- each object occurs in O(log n) nodes

Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations

Proof (Sketch

- use balances search tree
- each leaf corresponds to an update
- node n corresponds to interval of time $[s_n, e_n]$
- if an object exists in the time interval [s, e], then it appears in all node n if $[s_n, e_n] \subseteq [s, e]$ if non of n's ancestors' are $\subseteq [s, e]$
- each object occurs in $O(\log n)$ nodes

Proof (Sketch, cnt.)

- to query find leaf corresponding to t
- look at ancestors to find all objects
- O(log m) results which can be combined in O(log m) time

Decomposable Search Problems: Full Retroactivity

Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations

Proof (Sketch

- use balances search tree
- each leaf corresponds to an update
- node n corresponds to interval of time $[s_n, e_n]$
- if an object exists in the time interval [s, e], then it appears in all node n if $[s_n, e_n] \subseteq [s, e]$ if non of n's ancestors' are $\subseteq [s, e]$
- each object occurs in O(log n) nodes

Proof (Sketch, cnt.)

- to query find leaf corresponding to t
- look at ancestors to find all objects
- O(log m) results which can be combined in O(log m) time
- data structure is stored for each operation!
- $O(\log m)$ space overhead!

Lemma: Lower Bound

Rewinding *m* operations has a lower bound of $\Omega(m)$ overhead

general case

Lemma: Lower Bound

Rewinding *m* operations has a lower bound of $\Omega(m)$ overhead

general case

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - X = X
 - Y+ = value
 - $Y = X \cdot Y$
 - query Y

Lemma: Lower Bound

Rewinding *m* operations has a lower bound of $\Omega(m)$ overhead

general case

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations

$$X = X$$

$$Y = X \cdot Y$$

query Y

perform operations

•
$$Y + = a_n$$

$$Y = X \cdot Y$$

•
$$Y+=a_{n=1}$$

$$Y = X \cdot Y$$

•
$$Y+=a_0$$

what are we computing here? PINGO

Lemma: Lower Bound

Rewinding *m* operations has a lower bound of $\Omega(m)$ overhead

general case

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations

$$X = X$$

$$Y = X \cdot Y$$

query Y

perform operations

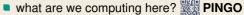
$$Y+=a_n$$

$$Y = X \cdot Y$$

•
$$Y+=a_{n=1}$$

$$Y = X \cdot Y$$

•
$$Y+=a_0$$



$$Y = a_n \cdot X^n + a_{n-1}X^{n-1} + \cdots + a_0$$

Lemma: Lower Bound

Rewinding m operations has a lower bound of $\Omega(m)$ overhead

general case

Proof (Sketch)

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - X = X
 - Y+ = value
 - $Y = X \cdot Y$
 - query Y

Proof (Sketch, cnt.)

- perform operations
 - $Y + = a_n$
 - $Y = X \cdot Y$
 - $Y+=a_{n=1}$
 - $Y = X \cdot Y$
 - ...
 - $Y+=a_0$
- what are we computing here? PINGO
- $Y = a_n \cdot X^n + a_{n-1}X^{n-1} + \cdots + a_0$
- evaluate polynomial at X = x using t=0,X=x

Lemma: Lower Bound

Rewinding m operations has a lower bound of $\Omega(m)$ overhead

general case

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations

$$X = X$$

$$Y = X \cdot Y$$

query Y

perform operations

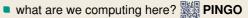
•
$$Y + = a_n$$

$$Y = X \cdot Y$$

•
$$Y+=a_{n=1}$$

$$Y = X \cdot Y$$

•
$$Y + = a_0$$



$$Y = a_n \cdot X^n + a_{n-1}X^{n-1} + \cdots + a_0$$

• evaluate polynomial at
$$X = x$$
 using t=0, X=x

• this requires
$$\Omega(n)$$
 time [FHM01]

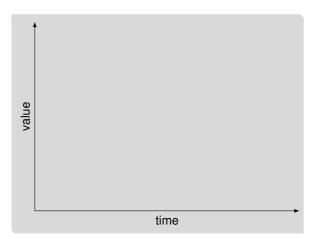
9/17

Priority Queues: Partial Retroactivity (1/6)

- priority queue with
 - insert
 - delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log n)$ overhead per partially retroactive operation

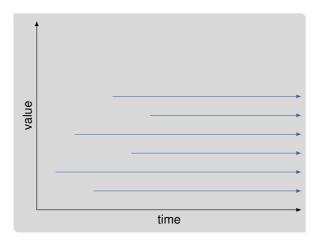


Priority Queues: Partial Retroactivity (1/6)

- priority queue with
 - insert
 - delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log n)$ overhead per partially retroactive operation

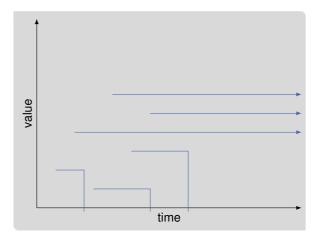


Priority Queues: Partial Retroactivity (1/6)

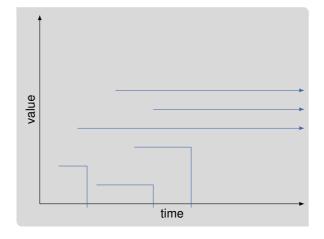
- priority queue with
 - insert
 - delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log n)$ overhead per partially retroactive operation

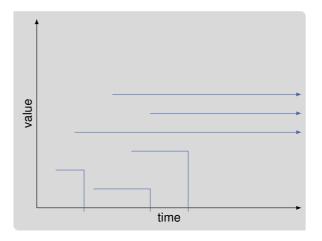


- what is the problem with
 - INSERT(t,delete-min())
 - INSERT(t,insert(i))



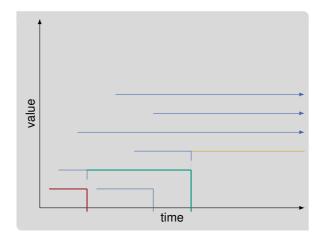
Priority Queues: Partial Retroactivity (2/6)

- what is the problem with
 - INSERT(t, delete-min())
 - INSERT(t,insert(i))
- INSERT(t, delete-min()) creates chain-reaction
- INSERT(t,insert(i)) creates chain-reaction

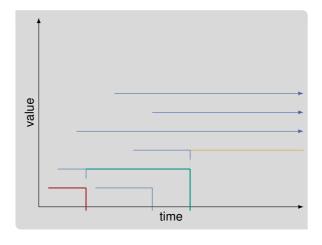


Priority Queues: Partial Retroactivity (2/6)

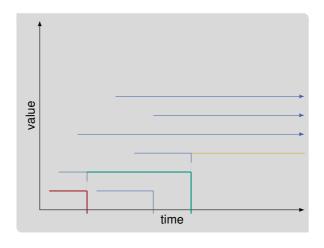
- what is the problem with
 - INSERT(t, delete-min())
 - INSERT(t,insert(i))
- INSERT(t, delete-min()) creates chain-reaction
- INSERT(t,insert(i)) creates chain-reaction



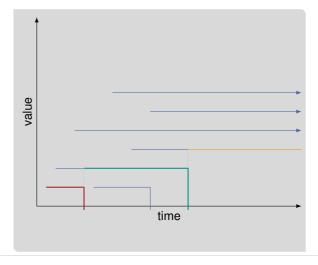
- what is the problem with
 - INSERT(t,delete-min())
 - INSERT(t,insert(i))
- INSERT(t, delete-min()) creates chain-reaction
- INSERT(t,insert(i)) creates chain-reaction
- can we solve DELETE(t,delete-min()) using INSERT(t,insert(i))? PINGO



- what is the problem with
 - INSERT(t, delete-min())
 - INSERT(t,insert(i))
- INSERT(t, delete-min()) creates chain-reaction
- INSERT(t,insert(i)) creates chain-reaction
- can we solve DELETE(t, delete-min()) using INSERT(t, insert(i))? PINGO
- insert deleted minimum right after deletion



- \blacksquare let Q_t be elements in PQ at time t
- what values are in Q_{∞} ? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_{∞}
- values is $\max\{v, v' : v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard o can change a lot

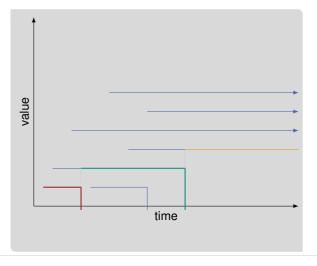


- \blacksquare let Q_t be elements in PQ at time t
- what values are in Q_{∞} ? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_{∞}
- values is $\max\{v, v' : v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard o can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_{\infty}$

lacktriangle all elements present at t' are present at t_{∞}

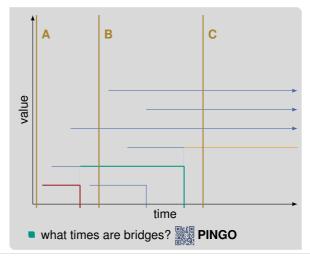


- \blacksquare let Q_t be elements in PQ at time t
- what values are in Q_{∞} ? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_{∞}
- values is $\max\{v, v' : v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard o can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_{\infty}$

lacktriangle all elements present at t' are present at t_{∞}

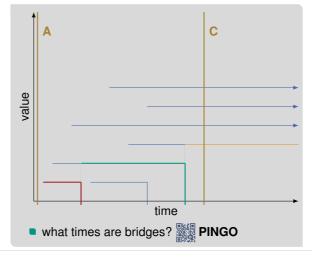


- \blacksquare let Q_t be elements in PQ at time t
- what values are in Q_{∞} ? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_{∞}
- values is $\max\{v, v' : v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard o can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_{\infty}$

lacktriangle all elements present at t' are present at t_{∞}



Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

 $\max\{v': v' \text{ deleted at time } \geq t\}$

=

 $\max\{v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\}$

Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v': v' \text{ deleted at time } \geq t\}$$

=

 $\max\{v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\}$

Proof (Sketch

- $\max\{v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\} \in \{v' : v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - \blacksquare contradicting that t' is bridge preceding t

Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v': v' \text{ deleted at time } \geq t\}$$

=

 $\max\{v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\}$

Proof (Sketch

- $\max\{v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\} \in \{v' : v' \text{ deleted at time } \geq t\}$
 - \blacksquare if maximum value is deleted between t' and t
 - then this time is a bridge
 - \blacksquare contradicting that t' is bridge preceding t

Proof (Sketch, cnt.)

- $\max\{v' : v' \text{ deleted at time } \geq t\} \in \{v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\}$
 - if v' is deleted at some time $\geq t$
 - then it is not in Q_{∞}

Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v': v' \text{ deleted at time } \geq t\}$$

=

 $\max\{v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\}$

Proof (Sketch

- $\max\{v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\} \in \{v' : v' \text{ deleted at time } \geq t\}$
 - \blacksquare if maximum value is deleted between t' and t
 - then this time is a bridge
 - \blacksquare contradicting that t' is bridge preceding t

Proof (Sketch, cnt.)

- $\max\{v' \colon v' \text{ deleted at time } \geq t\} \in \{v' \notin Q_{\infty} \colon v' \text{ inserted at time } \geq t'\}$
 - if v' is deleted at some time $\geq t$
 - then it is not in Q_{∞}
- what values are in Q_{∞} ? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_{∞}
- $\max\{v, v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\}$

- keep track of inserted values
- use balanced binary search trees for O(log n) overhead

- keep track of inserted values
- use balanced binary search trees for O(log n) overhead
- BBST for Q_{∞} changed for each update

- keep track of inserted values
- use balanced binary search trees for O(log n) overhead
- BBST for Q_{∞} changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_{\infty} : v' \text{ inserted in subtree of } x\}$

- keep track of inserted values
- use balanced binary search trees for O(log n) overhead
- **BBST** for Q_{∞} changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_{\infty} : v' \text{ inserted in subtree of } x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_{\infty}$, 1 for inserts with $v \notin Q_{\infty}$ and -1 for delete-mins
 - inner nodes store subtree sums

- keep track of inserted values
- use balanced binary search trees for O(log n) overhead
- BBST for Q_{∞} changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_{\infty} : v' \text{ inserted in subtree of } x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with v ∈ Q_∞, 1 for inserts with v ∉ Q_∞ and -1 for delete-mins
 - inner nodes store subtree sums

how can we find bridges? PINGO

- keep track of inserted values
- use balanced binary search trees for O(log n) overhead
- BBST for Q_{∞} changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_{\infty} : v' \text{ inserted in subtree of } x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_{\infty}$, 1 for inserts with $v \notin Q_{\infty}$ and -1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges? PINGO
- use third BBST and find prefix of updates summing to 0
- requires O(log n) time as we traverse tree at most twice
- this results in bridge t'

- keep track of inserted values
- use balanced binary search trees for O(log n) overhead
- BBST for Q_{∞} changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_{\infty} : v' \text{ inserted in subtree of } x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_{\infty}$, 1 for inserts with $v \notin Q_{\infty}$ and -1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges? PINGO
- use third BBST and find prefix of updates summing to 0
- requires O(log n) time as we traverse tree at most twice
- this results in bridge t'
- use second BBST to identify maximum value not in Q_{∞} on path to t'
- since BBST is augmented with these values, this requires O(log n) time

- keep track of inserted values
- use balanced binary search trees for O(log n) overhead
- **BBST** for Q_{∞} changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_{\infty} : v' \text{ inserted in subtree of } x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_{\infty}$, 1 for inserts with $v \notin Q_{\infty}$ and -1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges? PINGO
- use third BBST and find prefix of updates summing to 0
- \blacksquare requires $O(\log n)$ time as we traverse tree at most twice
- this results in bridge t'
- use second BBST to identify maximum value not in Q_{∞} on path to t'
- since BBST is augmented with these values, this requires $O(\log n)$ time
- update all BBSTs in O(log n) time

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log n)$ overhead per partially retroactive operation

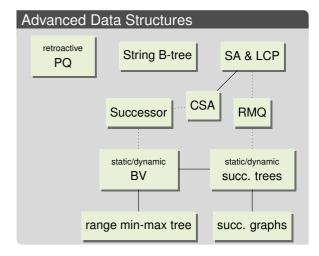
- requires three BBSTs
- updates need to update all BBSTs

- priority queue with
 - insert
 - delete
 - min
- identify queries that are now incorrect
- using ray shooting <a>

Conclusion and Outlook

This Lecture

retroactive data structures



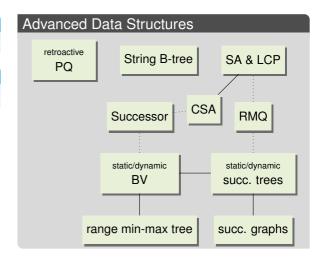
Conclusion and Outlook

This Lecture

retroactive data structures

Next Lecture

geometric data structures



[FHM01] Gudmund Skovbjerg Frandsen, Johan P. Hansen, and Peter Bro Miltersen. "Lower Bounds for Dynamic Algebraic Problems". In: *Inf. Comput.* 171.2 (2001), pages 333–349. DOI: 10.1006/inco.2001.3046.