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Organization

Exams Evaluation

® 10.08.2022 and 29.09.2022 & now
® write to blancani@kit.edu
& full name
® Matrikelnummer
® PO version
a date
® online or in person @ depending on
situation/personal preferences

@ 18.07.2022 Q&A during last half of lecture
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Recap: Persistent Data Structures

® |ecture based on: http://courses.csail.mit.
edu/6.851/springl2/lectures/L0O1
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Recap: Persistent Data Structures

® |ecture based on: http://courses.csail.mit.
edu/6.851/springl2/lectures/LO1

Persistence

® change in the past creates new branch
@ similar to version control
@ everything old/new remains the same
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Recap: Persistent Data Structures

® lecture based on: http://courses.csail.mit. Definition: Partial Persistence

edu/6.851/springl2/lectures/LO1 Only the latest version can be updated
Persistence Definition: Full Persistence
@ change in the past creates new branch Any version can be updated

® similar to version control

& everything old/new remains the same Definition: Confluent Persistence

Like full persistence, but two versions can be
combined to a new version

Definition: Functional

Nodes cannot be modified, only new nodes can be
created
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Recap: Persistent Data Structures

® lecture based on: http://courses.csail.mit. Definition: Partial Persistence

edu/6.851/springl2/lectures/LO1 Only the latest version can be updated
Persistence Definition: Full Persistence
® change in the past creates new branch Any version can be updated

® similar to version control

& everything old/new remains the same Definition: Confluent Persistence

Like full persistence, but two versions can be

Retroactivity combined to a new version
® change in the past affects future — -
9 P Definition: Functional

® make change in earlier version changes all later »
versions Nodes cannot be modified, only new nodes can be

created
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Retroactive Data Structures

® INSERT(t, operation): insert operation at time ¢
® DELETE(t): delete operation at time t
® QUERY(t, query): ask query at time ¢

& for a priority queue updates are
® insert
& delete-min
® time is integer @ for simplicity otherwise use
order-maintenance data structure

inselrt(7) inselrt(2) inselrt(3) del-lmin del-lmin | queries
i | 1

(I) 1I 2 3 4 nc'>w time
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® INSERT(t, operation): insert operation at time ¢
® DELETE(t): delete operation at time t
® QUERY(t, query): ask query at time ¢

& for a priority queue updates are
® insert
& delete-min
® time is integer @ for simplicity otherwise use
order-maintenance data structure
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® INSERT(t, operation): insert operation at time ¢
® DELETE(t): delete operation at time t
® QUERY(t, query): ask query at time ¢

& for a priority queue updates are
® insert
& delete-min
® time is integer @ for simplicity otherwise use
order-maintenance data structure
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Definition: Partial Retroactivity

QUERY is only allowed for t = co @ now

Definition: Full Retroactivity

QUERY is allowed at any time t
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Retroactive Data Structures

® INSERT(t, operation): insert operation at time ¢
® DELETE(t): delete operation at time t
® QUERY(t, query): ask query at time ¢

& for a priority queue updates are
® insert
& delete-min
® time is integer @ for simplicity otherwise use
order-maintenance data structure

inselrt(7) inselrt(2) inselrt(3) del-lmin del-lmin
i | 1

0 1 2 3 4

queries

I .
now time
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Definition: Partial Retroactivity

QUERY is only allowed for t = co @ now

Definition: Full Retroactivity

QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity

INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

Institute of Theoretical Informatics, Algorithm Engineering
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Easy Cases: Partial Retroactivity

& commutative operations

® insert and delete-min are not commutative
® insert and delete are commutative

® invertible updates

® operation op™ ' such that op™1(op(-)) = 0
® DELETE becomes INSERT inverse operation

makes partial retroactivity easy

INSERT(t, operation) = INSERT(co, operation)
DELETE(t, 0p) = INSERT(c0, 0p~ ")
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Easy Cases: Partial Retroactivity

® commutative operations Partial Retroactivity

® insert and delete-min are not commutative ® hashing
® insert and delete are commutative

invertible updates

® operation op™ ' such that op™1(op(-)) = 0
® DELETE becomes INSERT inverse operation

@ dynamic dictionaries

® array with updates only @ A[/|+ = value

makes partial retroactivity easy

INSERT(t, operation) = INSERT(co, operation)
DELETE(t, 0p) = INSERT(c0, 0p~ ")
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Search Problems

Definition: Search Problem

A search problem is a problem on a set S of objects
with operations insert, delete, and query(x, S)
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Search Problems

Definition: Search Problem

A search problem is a problem on a set S of objects
with operations insert, delete, and query(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search
problem, with

® query(x, AU B) = f(query(x, A), query(x, B))
® with f requiring O(1) time
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Search Problems

Definition: Search Problem

A search problem is a problem on a set S of objects
with operations insert, delete, and query(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search
problem, with

® query(x, AU B) = f(query(x, A), query(x, B))
® with f requiring O(1) time

® which decomposable search problem have we
seen Eﬁ‘% PINGO
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Search Problems

Definition: Search Problem

A search problem is a problem on a set S of objects
with operations insert, delete, and query(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search
problem, with

predecessor and successor search

range minimum queries

nearest neighbor

point location

® query(x, AU B) = f(query(x, A), query(x, B))
® with f requiring O(1) time

® which decomposable search problem have we
seen Eﬁ‘% PINGO
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Search Problems

Definition: Search Problem

A search problem is a problem on a set S of objects
with operations insert, delete, and query(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search
problem, with

®w query(x, AU B) = f(query(x, A), query(x, B)) ® these types of problems are also “easy”
® with f requiring O(1) time

predecessor and successor search

range minimum queries

nearest neighbor

point location

® which decomposable search problem have we
seen Eﬁ‘% PINGO
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Decomposable Search Problems: Full Retroactivity

Every decomposable search problems can be made
fully retroactive with a O(log m) overhead in space
and time, where m is the number of operations
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Decomposable Search Problems: Full Retroactivity

Every decomposable search problems can be made
fully retroactive with a O(log m) overhead in space
and time, where m is the number of operations

use balances search tree
each leaf corresponds to an update
node n corresponds to interval of time [s, ]

if an object exists in the time interval [s, €], then
it appears in all node nif [s,, e,] C [s, €] if non
of n's ancestors’ are C [s, €]

® each object occurs in O(log n) nodes
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Decomposable Search Problems: Full Retroactivity
Every decomposable search problems can be made ® to query find leaf corresponding to ¢
fully retroactive with a O(log m) overhead in space ® look at ancestors to find all objects

i h is th f i . . .
and time, where m is the number of operations Ol ) teuls e e 5 GaTEd I

O(log m) time

use balances search tree
each leaf corresponds to an update
node n corresponds to interval of time [s, ]

if an object exists in the time interval [s, €], then
it appears in all node nif [s,, e,] C [s, €] if non
of n's ancestors’ are C [s, €]

® each object occurs in O(log n) nodes
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Decomposable Search Problems: Full Retroactivity

Every decomposable search problems can be made ® to query find leaf corresponding to ¢
fully retroactive with a O(log m) overhead in space
and time, where m is the number of operations

look at ancestors to find all objects

O(log m) results which can be combined in
O(log m) time

use balances search tree

data structure is stored for each operation!
each leaf corresponds to an update

O(log m) space overhead!
node n corresponds to interval of time [s, ]

if an object exists in the time interval [s, €], then
it appears in all node nif [s,, e,] C [s, €] if non
of n's ancestors’ are C [s, €]

® each object occurs in O(log n) nodes
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Lemma: Lower Bound

Rewinding m operations has a lower bound of Q(m)
overhead

® general case
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General Full Retroactivity

Rewinding m operations has a lower bound of Q(m)
overhead

® general case

@ two values X and Y
® jnitially X =P and Y =0
® supported operations
mX=x
& Y4 = value
ayY=X.Y
a query Y
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General Full Retroactivity
Rewinding m operations has a lower bound of Q(m) ® perform operations
overhead Y+ =a,
ayY=X.Y
® general case ® Y+ = ap
mY=X.Y
.
B Y+ =g

@ two values X and Y
® jnitially X =P and Y =0
® supported operations
mX=x
& Y4 = value
ayY=X.Y
a query Y

@ what are we computing here?
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General Full Retroactivity
Rewinding m operations has a lower bound of Q(m) ® perform operations
overhead Y+ =a,
ayY=X.Y
® general case ® Y+ = ap
mY=X.Y
.
B Y+ =g

@ two values X and Y
® jnitially X =P and Y =0
® supported operations
mX=x
& Y4 = value
ayY=X.Y
a query Y

@ what are we computing here?

Y =3, X"+a, X"+ - +a
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General Full Retroactivity
Rewinding m operations has a lower bound of Q(m) ® perform operations
overhead Y+ =a,
ayY=X.Y
® general case ® Y+ = ap
mY=X.Y
.
B Y+ =g

@ two values X and Y
® jnitially X =P and Y =0
® supported operations
mX=x
& Y4 = value
ayY=X.Y
a query Y

@ what are we computing here?

Y =3, X"+a, X"+ - +a
® evaluate polynomial at X = x using t=0, X=x
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General Full Retroactivity

Rewinding m operations has a lower bound of Q(m) ® perform operations
overhead B Y+ =a,
ayY=X.Y
® general case ® Yt = an
ayYy=X-Y
.
aY+=a

@ two values X and Y a
® initially X =0 and Y =0
® supported operations

Y=a, X"+ a, X" "+ +a

- X ® evaluate polynomial at X = x using t=0, X=x
® Y+ = value ® this requires Q(n) time [FHMO01]
ayYy=X-Y

a query Y
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Priority Queues: Partial Retroactivity (1/6)

& priority queue with 1
® insert
® delete-min

@ delete-min makes PQ non-commutative

value

A priority queue can be partial retroactive with only
O(log n) overhead per partially retroactive operation

time
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Priority Queues: Partial Retroactivity (1/6)

& priority queue with 1
® insert
& delete-min

@ delete-min makes PQ non-commutative

value

A priority queue can be partial retroactive with only
O(log n) overhead per partially retroactive operation

time
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Priority Queues: Partial Retroactivity (1/6)

& priority queue with 1
® insert
& delete-min

@ delete-min makes PQ non-commutative

value

A priority queue can be partial retroactive with only
O(log n) overhead per partially retroactive operation

.

T
time

1017 2022-07-04 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering



KIT

Priority Queues: Partial Retroactivity (2/6)

@ what is the problem with 1

® INSERT(t,delete-min())
® INSERT(t,insert(i))

value

‘ time
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Priority Queues: Partial Retroactivity (2/6)

@ what is the problem with 1

® INSERT(t,delete-min())
® INSERT(t,insert(i))

® INSERT(t,delete-min()) creates chain-reaction
® INSERT(t,insert(i)) creates chain-reaction

value

.

T
time
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Priority Queues: Partial Retroactivity (2/6)

@ what is the problem with 1

® INSERT(t,delete-min())
® INSERT(t,insert(i))

® INSERT(t,delete-min()) creates chain-reaction
® INSERT(t,insert(i)) creates chain-reaction

value

‘ time
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Priority Queues: Partial Retroactivity (2/6)

@ what is the problem with 1

® INSERT(t,delete-min())
® INSERT(t,insert(i))

® INSERT(t,delete-min()) creates chain-reaction
® INSERT(t,insert(i)) creates chain-reaction

value

@ can we solve DELETE(t delete-min()) using
INSERT (t,insert(i))? &5 PINGO

‘ time
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Priority Queues: Partial Retroactivity (2/6)

@ what is the problem with 1

® INSERT(t,delete-min())
® INSERT(t,insert(i))

® INSERT(t,delete-min()) creates chain-reaction

® INSERT(t,insert(i)) creates chain-reaction

value

@ can we solve DELETE(t delete -min()) using
INSERT(t,insert(i))? gPINGO

® insert deleted minimum right after deletion

T
time
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Priority Queues: Partial Retroactivity (3/6)

a let Q; be elements in PQ at time ¢ 4

® what values are in Q,.?

® what value inserts INSERT(t, insert(v)) in Qx
® values is max{v, v': v/ deleted at time > t}
® maintaining deleted elements is hard

value

T
time
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Priority Queues: Partial Retroactivity (3/6)

let Q; be elements in PQ at time t 4

what values are in Q,.?
what value inserts INSERT(t, insert(v)) in Qu

values is max{v, v': v’ deleted at time > t}

| 85 8 9
value

maintaining deleted elements is hard

Atime t' is a bridge if Qv C Qs

" time
® all elements present at t’ are present at t.,
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Priority Queues: Partial Retroactivity (3/6)

let Q; be elements in PQ at time t 4

what values are in Q,.?
what value inserts INSERT(t, insert(v)) in Qu

values is max{v, v': v’ deleted at time > t}

maintaining deleted elements is hard

value

Atime t' is a bridge if Qv C Qs ‘

" time

® all elements present at t’ are present at t., . . Eeim
? &

® what times are bridges? e PINGO
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Priority Queues: Partial Retroactivity (3/6)

let Q; be elements in PQ at time t 4

what values are in Q,.?
what value inserts INSERT(t, insert(v)) in Qu

values is max{v, v': v’ deleted at time > t}

maintaining deleted elements is hard

value

Atime t' is a bridge if Qv C Qs ‘

" time

® all elements present at t’ are present at t., . : Egim
? &

® what times are bridges? e PINGO
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Priority Queues: Partial Retroactivity (4/6)

If time t’ is closest bridge preceding time t, then
max{Vv': v/ deleted at time > t}

max{V’ ¢ Q. : V' inserted at time > t'}
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Priority Queues: Partial Retroactivity (4/6)

If time t’ is closest bridge preceding time t, then

max{Vv': v/ deleted at time > t}

max{V’ ¢ Q. : V' inserted at time > t'}

® max{V' ¢ Qu: V' inserted attime > t'} €
{V': v/ deleted at time > t}
® if maximum value is deleted between ¢’ and ¢
& then this time is a bridge
® contradicting that t’ is bridge preceding t
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Priority Queues: Partial Retroactivity (4/6)
If time t' is closest bridge preceding time t, then ® max{v’: v/ deleted attime > t} € {V' ¢
Q. : V' inserted at time > t'}
max{v’: v’ deleted at time > t} ® if v/ is deleted at some time > ¢

® then it is notin Q.

max{V’ ¢ Q. : V' inserted at time > t'}

® max{V' ¢ Qu: V' inserted attime > t'} €
{v': v/ deleted at time > t}
® if maximum value is deleted between ¢’ and ¢
& then this time is a bridge
® contradicting that t’ is bridge preceding t
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Priority Queues: Partial Retroactivity (4/6)
If time t' is closest bridge preceding time t, then ® max{v’: v/ deleted attime > t} € {V' ¢
Q. : V' inserted at time > t'}
max{v’: v’ deleted at time > t} ® if v/ is deleted at some time > ¢

® then it is notin Q.

max{V’ ¢ Q. : V' inserted at time > t'} ® what values are in Q.?
® what value inserts INSERT(¢, insert(v)) in Quo
® max{v,Vv' ¢ Q: V inserted at time > t'}
® max{V' ¢ Qu: V' inserted attime > t'} €
{V': V' deleted at time > t}
= if maximum value is deleted between t" and t

® then this time is a bridge
® contradicting that ¢’ is bridge preceding t
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Priority Queues: Partial Retroactivity (5/6)

® keep track of inserted values

® use balanced binary search trees for O(log n)
overhead
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Priority Queues: Partial Retroactivity (5/6)

® keep track of inserted values

® use balanced binary search trees for O(log n)
overhead

= BBST for Q.
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Priority Queues: Partial Retroactivity (5/6)

® keep track of inserted values

® use balanced binary search trees for O(log n)
overhead

= BBST for Q.

@ BBST where leaves are inserts ordered by time
augmented with

® for each node x store
max{v’ ¢ Qs : v’ inserted in subtree of x}
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Priority Queues: Partial Retroactivity (5/6)

® keep track of inserted values

® use balanced binary search trees for O(log n)
overhead

@ BBST for Q.
@ BBST where leaves are inserts ordered by time
augmented with
® for each node x store
max{v’ ¢ Qs : v’ inserted in subtree of x}
® BBST where leaves are all updates ordered by
time augmented with
® |eaves store 0 for inserts with v € Q, 1 for
inserts with v ¢ Q. and —1 for delete-mins
® inner nodes store subtree sums
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Priority Queues: Partial Retroactivity (5/6)

® keep track of inserted values = how can we find bridges? :

® use balanced binary search trees for O(log n)
overhead

@ BBST for Q.
@ BBST where leaves are inserts ordered by time
augmented with
® for each node x store
max{v’ ¢ Qs : v’ inserted in subtree of x}
® BBST where leaves are all updates ordered by
time augmented with
® |eaves store 0 for inserts with v € Q, 1 for
inserts with v ¢ Q. and —1 for delete-mins
® inner nodes store subtree sums
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augmented with
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® how can we find bridges? 2 PINGO
@ use third BBST and find prefix of updates
summing to 0

® requires O(log n) time as we traverse tree at
most twice

® this results in bridge t’
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® keep track of inserted values

® use balanced binary search trees for O(log n)
overhead

@ BBST for Q.
@ BBST where leaves are inserts ordered by time
augmented with
® for each node x store
max{v’ ¢ Qs : v’ inserted in subtree of x}
® BBST where leaves are all updates ordered by
time augmented with
® |eaves store 0 for inserts with v € Q, 1 for
inserts with v ¢ Q. and —1 for delete-mins
® inner nodes store subtree sums
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how can we find bridges? = PINGO

@ use third BBST and find prefix of updates

summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t’

use second BBST to identify maximum value
not in Q. on path to

since BBST is augmented with these values,
this requires O(log n) time
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® keep track of inserted values

® use balanced binary search trees for O(log n)
overhead

@ BBST for Q.
@ BBST where leaves are inserts ordered by time
augmented with
® for each node x store
max{v’ ¢ Qs : v’ inserted in subtree of x}
® BBST where leaves are all updates ordered by
time augmented with
® |eaves store 0 for inserts with v € Q, 1 for
inserts with v ¢ Q. and —1 for delete-mins
® inner nodes store subtree sums

Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures 2

KIT

Karlsruhe Institute of Technology

® how can we find bridges? 2 PINGO
@ use third BBST and find prefix of updates

summing to 0

® requires O(log n) time as we traverse tree at

most twice
® this results in bridge t’

® use second BBST to identify maximum value
not in Q. on path to

® since BBST is augmented with these values,
this requires O(log n) time

® update all BBSTs in O(log n) time
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Priority Queues: Partial Retroactivity (6/6)

A priority queue can be partial retroactive with only
O(log n) overhead per partially retroactive operation

® requires three BBSTs
® updates need to update all BBSTs
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Nonoblivious Retroactivity é’%

& priority queue with

& insert
| delete
& min

& dentify queries that are now incorrect
® using ray shooting
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Conclusion and Outlook

This Lecture Advanced Data Structures

® retroactive data structures

retroactive

PQ String B-tree | SA & LCP |

Successor | CSA | RMQ |

static/dynamic static/dynamic

BV succ. trees

range min-max tree succ. graphs
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Conclusion and Outlook

This Lecture Advanced Data Structures

® retroactive data structures

retroactive

PQ String B-tree | SA & LCP |

Successor | CSA | RMQ |

static/dynamic static/dynamic

BV succ. trees

range min-max tree succ. graphs

Next Lecture
® geometric data structures
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