Master’s Thesis
Fast and Space Efficient Wavelet Tree Construction

Overview

The FM-index combines two data structures: the Burrows-
Wheeler transform and wavelet trees. It is a very prominent
full-text index and used in most DNA read aligners [4] and
in Bioinformatics in general. In this Master's thesis, we focus
on the efficient construction of the second data structure—
wavelet trees.

The wavelet tree is a binary tree data structure that can
be used to answer rank and select queries on texts of size n
over an alphabet of size o in O(lgo) time. Here, rank,(i)
queries ask for the number of occurrences of the symbol «
before the position i and select,, (i) queries return the text
position of the i-th occurrence of the symbol a.

Let T" be a text of length n over an alphabet of size 0. The
corresponding wavelet tree consists of [1g o] bit vectors of size
n, see Fig.[1] Even though all n[lg o] entries in the bit vectors
have to be looked at during construction, the wavelet tree
can be computed in O(nlgo/+/Ign) time using broadword
programming [1, 5]. There exists an implementation of such
an algorithm by Kaneta [3], which heavily relies on specialized
CPU instructions like parallel bit extract and packed shuffle
bytes. The reported construction times are faster than the
previously fastest sequential WT construction algorithm [2].
However, the algorithm has one significant disadvantage—it
requires twice as much memory.

Objective

The main objective of this Master's thesis is to develop a
fast and space efficient wavelet tree construction algorithm
that computes the wavelet tree in O(nlg o /v/Inn) time using
specialized CPU instructions.

The parallelization of this algorithm is another (minor) goal
of this Master's thesis. There exists a very fast meta-algorithm
that can be used to parallelize all wavelet tree construction
algorithms, e.g., [2] and it should be experimentally evaluated
whether a parallelization of the algorithm described above is
faster than using the meta-algorithm for the parallelization.

Requirements

e Excellent C++ programming skills

e Interest in string algorithms and compact data structures

Contact

Florian Kurpicz (kurpiczQkit.edu))

X = [07 8)
0 1 3 7 1 5 4 2 6 3
ojojoj1ry0}1}11011]0
S0 = [0,4) / \ o) =[4,8)
0 1 3 1 2 3 7 5 4 6
0Oj0]1|0|1]1 1 0|1
0 1 1 3 2 3 5 4 7 6
0O|]1]|1 1101 110 110
200 = [0, 2) 201 = [2/4) 210 = [47 6) 211 = [6,8)

Figure 1: The wavelet tree of T'=[0,1,3,7,1,5,4,2,6,3|.
The light teal (@) arrays contain the characters represented at
the corresponding position in the bit vector and are not a part
of the wavelet tree. Note that all bit vectors on the same depth
can be concatenated to a single bit vector, while retaining
the same functionality. ¥, denotes the characters that are
represented by the bit vector for a € {e¢,0,1,00,01,10,11}.
All this auxiliary information is not stored explicitly.

References
[1] Maxim A. BabenkoMunroNV2016WT, Pawel
Gawrychowski, Tomasz Kociumaka, and Tatiana

Starikovskaya. Wavelet trees meet suffix trees. In SODA,
pages 572-591. SIAM, 2015.

[2] Johannes Fischer, Florian Kurpicz, and Marvin Lobel.
Simple, fast and lightweight parallel wavelet tree construc-

tion. In ALENEX, pages 9-20. SIAM, 2018.
(3]

Yusaku Kaneta. Fast wavelet tree construction in practice.
In SPIRE, volume 11147 of Lecture Notes in Computer

Science, pages 218-232. Springer, 2018.

[4] Ben Langmead and Steven L. Salzberg. Fast gapped-
read alignment with bowtie 2. Nature methods, 9(4):357,

2012.
[5]

J. lan Munro, Yakov Nekrich, and Jeffrey Scott Vitter.
Fast construction of wavelet trees. Theor. Comput. Sci.,

638:91-97, 2016.

mailto:kurpicz@kit.edu

