
Master’s Thesis
Fast and Space Efficient Wavelet Tree Construction

Overview

The FM-index combines two data structures: the Burrows-
Wheeler transform and wavelet trees. It is a very prominent
full-text index and used in most DNA read aligners [4] and
in Bioinformatics in general. In this Master’s thesis, we focus
on the efficient construction of the second data structure—
wavelet trees.

The wavelet tree is a binary tree data structure that can
be used to answer rank and select queries on texts of size n
over an alphabet of size σ in O(lg σ) time. Here, rankα(i)
queries ask for the number of occurrences of the symbol α
before the position i and selectα(i) queries return the text
position of the i-th occurrence of the symbol α.

Let T be a text of length n over an alphabet of size σ. The
corresponding wavelet tree consists of dlg σe bit vectors of size
n, see Fig. 1. Even though all ndlg σe entries in the bit vectors
have to be looked at during construction, the wavelet tree
can be computed in O(n lg σ/

√
lg n) time using broadword

programming [1, 5]. There exists an implementation of such
an algorithm by Kaneta [3], which heavily relies on specialized
CPU instructions like parallel bit extract and packed shuffle
bytes. The reported construction times are faster than the
previously fastest sequential WT construction algorithm [2].
However, the algorithm has one significant disadvantage—it
requires twice as much memory.

Objective

The main objective of this Master’s thesis is to develop a
fast and space efficient wavelet tree construction algorithm
that computes the wavelet tree in O(n lg σ/

√
lnn) time using

specialized CPU instructions.
The parallelization of this algorithm is another (minor) goal

of this Master’s thesis. There exists a very fast meta-algorithm
that can be used to parallelize all wavelet tree construction
algorithms, e.g., [2] and it should be experimentally evaluated
whether a parallelization of the algorithm described above is
faster than using the meta-algorithm for the parallelization.

Requirements

• Excellent C++ programming skills

• Interest in string algorithms and compact data structures

Contact

Florian Kurpicz (kurpicz@kit.edu)

Σε = [0, 8)

0 1 3 7 1 5 4 2 6 3

0 0 0 1 0 1 1 0 1 0

Σ0 = [0, 4)

0 1 3 1 2 3

0 0 1 0 1 1

Σ1 = [4, 8)

7 5 4 6

1 0 0 1

Σ00 = [0, 2)

0 1 1

0 1 1

Σ01 = [2, 4)

3 2 3

1 0 1

Σ10 = [4, 6)

5 4

1 0

Σ11 = [6, 8)

7 6

1 0

Figure 1: The wavelet tree of T = [0, 1, 3, 7, 1, 5, 4, 2, 6, 3].
The light teal () arrays contain the characters represented at
the corresponding position in the bit vector and are not a part
of the wavelet tree. Note that all bit vectors on the same depth
can be concatenated to a single bit vector, while retaining
the same functionality. Σα denotes the characters that are
represented by the bit vector for α ∈ {ε, 0, 1, 00, 01, 10, 11}.
All this auxiliary information is not stored explicitly.

References

[1] Maxim A. BabenkoMunroNV2016WT, Pawel
Gawrychowski, Tomasz Kociumaka, and Tatiana
Starikovskaya. Wavelet trees meet suffix trees. In SODA,
pages 572–591. SIAM, 2015.

[2] Johannes Fischer, Florian Kurpicz, and Marvin Löbel.
Simple, fast and lightweight parallel wavelet tree construc-
tion. In ALENEX, pages 9–20. SIAM, 2018.

[3] Yusaku Kaneta. Fast wavelet tree construction in practice.
In SPIRE, volume 11147 of Lecture Notes in Computer
Science, pages 218–232. Springer, 2018.

[4] Ben Langmead and Steven L. Salzberg. Fast gapped-
read alignment with bowtie 2. Nature methods, 9(4):357,
2012.

[5] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter.
Fast construction of wavelet trees. Theor. Comput. Sci.,
638:91–97, 2016.

mailto:kurpicz@kit.edu

