
Master’s Thesis
LCP-Array Construction in Distributed Memory

Overview

The suffix array (SA) of a text contains the starting posi-
tions of all of its suffixes in lexicographical order, see Fig. 1
for an example. The SA is one of the most well-researched
text indices. It has applications in different string algorithms,
among others, as a full-text index and in text compression.
For many of these applications, the SA has to be combined
with auxiliary information stored in additional arrays.

The longest common prefix array (LCP-array) is such an
array. It contains the sizes of the longest common prefix of
all lexicographically consecutive suffixes, see also Fig. 1. The
LCP-array can be used to speed up pattern matching queries
in the SA and to compute a compressed version of the text,
as it contains information about redundant parts of the text.

All LCP-array construction algorithms can be divided into
two approaches. The first one is to compute it alongside the
SA, using information that is gained by comparing suffixes to
sort them to compute entries in the LCP-array, too. While
this approach can use some information twice (for the com-
putation of both, the SA and LCP-array), it also introduces
a running time and memory overhead, as the information for
the computation of both arrays has to be stored at the same
time.

The alternative for constructing the LCP-array is to con-
struct the SA first and to compute the LCP-array afterwards
using the SA. One advantage that arises from this approach
is that the LCP-array construction does not depend on the SA
construction. Thus, not every SA construction algorithm has
to be modified to compute the LCP-array and the best SA con-
struction algorithm can be used to compute the LCP-array. In
practice, this approach is faster (and more memory efficient)
on most inputs in many models of computation, e.g., main
memory [1], shared memory [4], and external memory [3].

Objective

The main objective of this Master’s thesis is to experimentally
evaluate whether the computation of the LCP-array based on
the SA is also faster than the simultaneous construction in
distributed memory.

To this end, at least one distributed memory LCP-array
construction algorithm that uses the SA has to be developed,
because at the present time, there exists only one imple-
mentation of a distributed memory LCP-array construction
algorithm [2], which computes the SA and LCP-array at the
same time.

$ i i i i m p p s s s s
$ p s s i i p i i s s

p s s s $ i p s i i
i i i s $ p s p s
$ p s i i i p s

p s s $ p i i
i i s p $ p
$ p i i p

p p $ i
i p
$ i

$

0 1 2 3 4 5 6 7 8 9 10 11

T m i s s i s s i p p i $

SA 11 10 7 4 1 0 9 8 6 3 5 2

LCP 0 0 1 1 4 0 0 1 0 2 1 3

Figure 1: SA and LCP-array for the text T = mississippi$.
The LCP-values are marked in green ().

Requirements

• Excellent C++ programming skills

• Interest in distributed and string algorithms

Contact

Florian Kurpicz (kurpicz@kit.edu)

References

[1] Johannes Fischer and Florian Kurpicz. Dismantling di-
vsufsort. In Stringology, pages 62–76. Department of
Theoretical Computer Science, Czech Technical University
in Prague, 2017.

[2] Patrick Flick and Srinivas Aluru. Parallel distributed
memory construction of suffix and longest common prefix
arrays. In SC, pages 16:1–16:10. ACM, 2015.

[3] Juha Kärkkäinen and Dominik Kempa. LCP array con-
struction in external memory. ACM J. Exp. Algorithmics,
21(1):1.7:1–1.7:22, 2016.

[4] Julian Shun. Fast parallel computation of longest com-
mon prefixes. In SC, pages 387–398. IEEE Computer
Society, 2014.

mailto:kurpicz@kit.edu

