
Advanced Data
Structures

MSc-Vorlesung
Wintersemester 2012/13

KIT

Johannes Fischer

1

Preliminaries
• 5 ECTS

• lectures in German, slides etc. in English

• prequisites:

• Algorithmen II

• interest in discrete, combinatorial problems

• ~14 lectures (NOT 27.12.12/03.01.13)

• oral exam (20-25 mins)

2

Preliminaries

• course homepage:
http://algo2.iti.kit.edu/2056.php

‣ slides & script

‣ additional course information

• Johannes.Fischer@kit.edu (room 207)

• office hours: Thursday 14-15

3

http://algo2.iti.kit.edu/1909.php
http://algo2.iti.kit.edu/1909.php
mailto:Johannes.Fischer@kit.edu
mailto:Johannes.Fischer@kit.edu

BADS'13

• write a paper on a data structure not
covered in the lecture

‣ list of topics on course website

‣ can be strengthened by experiments

• use LaTeX ⇒ learn to write scientifically

‣ vector graphics: ipe, xfig, ... (no bitmap!)

• website will provide style files, etc.

4

The Process
• as author:

‣ write paper (5-10 pages)

‣ submit to conference management system

• as member of program committee:

‣ blind peer reviews & ranking (~2 weeks)

• back to author role:

‣ submit final version ⇒ proceedings

‣ symposium: 20 min oral presentation

20%

10%

10%

5

What is a data
structure?

6

What is a Data
Structure?

A Data Structure specifies how to
encode data from some Data Type so as
to support the operators specified by a
given Abstract Data Type.

7

Example: Permutations
• data type: permutation π of [1,n]

• ADS operations:

• accessπ(i): return π[i]

• inverseπ(j): return i such that π[i]=j

• data structure: 2 arrays A[1,n], A-1[1,n]

• accessπ(i) = A[i]

• inverseπ(j) = A-1[j]

• might be OK, might be not (e.g. dynamic??)

8

Extending Functionality

• have: DS D for ADT T

‣ e.g. permutations with access/inverse

• want: DS D' for ADT T' with T' ⊇ T

‣ e.g. perms with access/inverse plus
inversionsπ(i) = |{j<i : π[j] > π[i]}|

• use D as black box: D' is called index

‣ sublinear space possible: |D'| = o(|D|)

9

• clever storage

‣ functionality "for free"

• e.g. heap:

Implicit DS

TEVIRX(\) =
� \
�

�

1

5 3

7 6 43

9 8

1

2 3

4 5 6 7

8 9

1 2 3 4 5 6 7 8 9

1 5 3 7 6 3 4 9 8

10

Course Contents

• hashing

• predecessor
data structures

• integer sorting/
searching

• distance oracles

• tree labelings

• lowest common/
level ancestors

• range minimum
queries

• succinct trees

• text indexing

11

Hashing
• set S of n objects from a LARGE universe U

• query for membership (+satellite info)

• Use space O(n), not O(|U|)

U

S
12

Hashing: lookup time

• chaining/linear probing:
O(1) expected time

• cuckoo hashing:
O(1) worst case time

• other operations O(1)
amortized & expected

13

Predecessor Queries
• S: n objects from a SORTED universe U

• given x ∈ U, return max{y ≤ x : y ∈ S}

• fast if elements are integers: O(lglg |U|)

1 |U|x

predecessor(x)

14

Integer Sorting

• sort n elements from a universe [0,2w-1]

‣ comparison based sorting: Θ(n lg n)

• counting sort: O(n + 2w)

• with predecessor queries: O(n lg w)

• signature sort:

‣ O(n) for w sufficiently large

‣ O(n lglg n) for all w
15

Distance Oracles

A

B

C

D

E

F

G

H

1

2

3
1

1

2

4

2

3

1

2

2

distance
to C?

16

Tree Labelings:
Ancestors

A B C D E F G

H I J

K

L

3,3

2,8

1,23

5,5 7,7

10,22

11,15

12,12 14,14

17,21

18,18
20,20

17

Lowest Common
Ancestors

A B C E F G

H I

L

D

J

K

18

Level Ancestors

A B C E F G

H I

L

J

2nd ancestor?

D

K

19

Range Minimum
Queries

2 2 21 1 13 34 4 45 6 67 78
i j

20

Succinct Trees

A B C E F G

H I

L

D

J

K

((()()())((()())(()())))
A B CH D E I LKJGF

n lg n bits

2n bits

21

String B-Trees
• text indexing in external memory

• substring queries (cf suffix tree/array)

• new challanges (minimize IOs)
7. Full-Text Indexes in External Memory 159

BT

BTBT

BT BT BT BT

56 20 64 31

64 60 24 31

 56 1 35 5

56 5 10 20

10 45 68 20 64 52 48 60 24 41 31

t l a s s u n b y f i t d o g a c e l i d c o d b y e

1 5 10 20 24 31 35

 41 45 48 52 56 60 64 68

a i d a t o m a t t e n u a t e c a r p a t e n t z o o a

Fig. 7.6. String B-tree

(external and internal) dynamic dictionary matching [298] and some other
internal memory problems [296].

String B-trees are designed to solve the dynamic version of the indexed
string matching problem (Problem 1). For simplicity, we mainly describe the
structure for solving the prefix search problem. As mentioned in Section 7.3.1,
a string matching query can be supported by storing the suffixes of all the
text strings, and supporting prefix search on the set of all suffixes.

String B-tree Data Structure. Given a set S = {s1, . . . , sN} of N strings
(the suffixes), a string B-tree for S is a B-tree in which all the keys are stored
at the leaves and the internal nodes contain copies of some of these keys.
The keys are the logical pointers to the strings (stored in external memory)
and the order between the keys is the lexicographic order among the strings
pointed to by them. Each node v of the string B-tree is stored in a disk block
and contains an ordered string set Sv ⊆ S, such that b ≤ |Sv| ≤ 2b, where
b = Θ(B) is a parameter which depends on the disk block size B. If we denote
the leftmost (rightmost) string in Sv by L(v) (R(v)), then the strings in S
are distributed among the string B-tree nodes as follows (see Fig. 7.6 for an
example):

– Partition S into groups of b strings except for the last group, which may
contain from b to 2b strings. Each group is mapped into a leaf v (with string
set Sv) in such a way that the left-to-right scanning of the string B-tree
leaves gives the strings in S in lexicographic order. The longest common
prefix length lcp(Sj, Sj+1) is associated with each pair (Sj , Sj+1) of Sv’s
strings.

22

Theory vs. Practice

• focus on theoretical (=mathematical)
analysis of data structures

• BUT: most methods highly practical
(perhaps with some engineering effort)

‣ VL "Algorithm Engineering"

• every method better than naive approach
(complex analysis ⇏ slow running time)

23

Classification of DSs
object type of DS

numbers „normal“

point sets integer

graphs randomized

trees distributed

arrays succinct

strings external

... parallel

cache aware etc.
24

Time vs Space
e.g. tree + LCA

query time

space
opt 2n bits O(n) words n2

O(1)

O(lg n)

O(n)

lazy

naive
traditional
optimum

succinct
optimum

25

