
Fortgeschrittene Datenstrukturen — Vorlesung: Distance Oracles

(ctd.), String B-Trees

Schriftführer: Patrick Flick patrick.flick@gmail.com

2.2.2012

1 Chapter 6: Distance Oracles (ctd.)

1.1 Short Note: Dijkstra’s Algorithm

In a graph G = (V,E) with non-negative edge weights ω(e), e ∈ E, Dijkstra’s single source shortest
path (SSSP) algorithm finds for a given source vertex s ∈ V the shortests path between that vertex
s and every other vertex. We denote the length of the shortest path from v to w by δ(v, w), i.e.
Dijktra’s algorithm computes δ(s, v) for all v ∈ V . Algorithm 1 shows the full pseudo-code of
Dijkstra’s algorithm. In short, Dijkstra’s algorithm declares all nodes unscanned and initializes an
array d with ∞ which holds an upper bound on the shortest path: δ(s, v) ≤ d[v]. First all edges
out of s are relaxed. While there are unscanned nodes with d[v] < ∞, take such a node v with
minimal d[v] and relax all its outgoing edges and declare v scanned.

The relax procedure for node v takes all edges (v, w) and sets d[w] to d[v] + ω(v, w) if this new
distance is smaller then the current estimate d[w].

In a graph with non-negative edge weights ω(v, w), Dijkstra’s algorithm ensures that for each
scanned node d[v] = δ(s, v) and thus at termination for all reachable nodes v : d[v] = δ(s, v).

The time complexity of Dijkstra’s algorithm depends upon the time complexity of the insert,
deleteMin and decreaseKey operations of the used priority queue as follows:

TDijkstra = O(m · TdecreaseKey(n) + n · (TdeleteMin(n) + Tinsert(n))) (1)

For a Fibonacci Heap this is:

TDijkstra = O(m+ n lg n) (2)

1.2 Computing δ(Ai, v) and pi(v)

For computing δ(Ai, v) and pi(v) for all 1 ≤ i ≤ k− 1, Dijkstra’s algorithm is used. For this a new
node s is added to the graph with an edge (s, v) to any v ∈ Ai with weight ω(s, v) = 0 and thus
δ(s, v) = 0. Dijkstra’s algorithm is started from node s, which returns the distances δ(Ai, v) in d[v]
for every node v in the graph. The pi(v)’s can be extracted from the parent array also returned by
Dijkstra’s algorithm.

The running time is O(n lg n+m) per level and thus O(k(n lg n+m)) in total.
If δ(v,Ai) = δ(v,Ai+1), we ensure that pi+1(v) = pi(v) by settings pi(v) appropriately. This

property will be needed when outputting entire paths of length at most distk(u, v) instead of only
the distances distk(u, v).

1

Algorithm 1 Dijkstra’s algorithm

function Dijkstra(s : NodeId) : NodeArray×NodeArray
d = 〈∞, . . . ,∞〉 : NodeArray of R ∪ {∞}
parent = 〈⊥, . . . ,⊥〉 : NodeArray of NodeId
parent[s] = s; d[s] = 0
Q : NodePQ; Q.insert(s)
while Q 6= ∅ do

u = Q.deleteMin
for edge e = (u, v) ∈ E do

// Relax

if d[u] + ω(e) < d[v] then
d[v] = d[u] + ω(e)
parent[v] = u
if v ∈ Q then Q.decreaseKey(v)
elseQ.insert(v)

return (d,parent)

1.2.1 Example

For Ai = {B,E, F,G}

A

B

1
C

2

2

D

1

E

4
F

1

2

G
4

H

4

2

3

s

0

0

0

0

2

Dijkstra’s algorithm gives:

δ(A,Ai) = 1, pi(A) = B

δ(B,Ai) = 0, pi(B) = B

δ(C,Ai) = 1, pi(C) = F

δ(D,Ai) = 2, pi(D) = F

. . . , . . .

1.3 Bunches and Clusters

To compute the bunches, we take a detour via clusters. Clusters can be thought of being the
inverses of bunches, and they are formally defined as follows: :

For allw ∈ Ai \Ai+1 : C(w) = {v ∈ V : δ(w, v) < δ(Ai+1, v)} (3)

In words, the cluster of w consists of all vertices closer to w than to any element of Ai+1. From the
definition follows that:

v ∈ C(w)⇔ w ∈ B(v) (4)

and thus ∑
w∈V
|C(w)| =

∑
v∈V
|B(v)| = kn1+1/k (5)

1.4 Computing Clusters

Each cluster C(w) is computed using a modified version of Dijkstra’s single source shortest path
(SSSP) algorithm starting from w. The modification is that an edge (u, v) is relaxed only if
d[u] + ω(u, v) < δ(Ai+1, v), where d[u] is the upper bound on δ(w, u) maintained by the algorithm
and u is the unscanned node with the smallest d[u] value.

The complexity of the modified Dijkstra algorithm using Fibonacci Heaps is

O(|E(C(w))|+ |C(w)| lg n) (6)

where E(C(w)) is the set of edges touching vertices of C(w).

1.4.1 Computing Bunches from Clusters

From the clusters, we can easily generate the bunches. Recall that w ∈ B(v) ⇔ v ∈ C(w). This
conversion can be done in

O(
∑
|C(w)|) = O(

∑
|B(v)|) (7)

time. As before, we store the witnesses pi(v), the distances δ(Ai, v), and the hash tables for B(v).
Additionally, we also store the shortest path trees that span the clusters C(w), for every w ∈ V .
The total size is therefore the same as before.

3

1.4.2 Example

Given the same graph as in the previous example and A0 = V , A1 = {B,E, F,G}, A2 = {E,F},
A3 = {E} and A4 = ∅. Calculating the cluster C(F) with the modified Dijkstra gives the following
shortests paths:

A

B

1
C

2

2

D

1

E

4
F

1

2

G
4

H

4

2

3

And thus C(F) = {A,B,C,D, F,H}. The nodes E and G are never visted by the algorithm,
because of the modified condition for relaxation.

The other clusters are:

i = 3 : C(E) = {A,B,C,D,E, F,G,H}
i = 2 : C(F) = {A,B,C,D, F,H}
i = 1 : C(B) = {A,B}

C(G) = {G,H}
i = 0 : C(A) = {A}

C(C) = {C,D}
C(D) = {D}
C(H) = {H}

The bunch B(A) is now easily gotten as B(A) = {A,B,E, F} because A appears in C(A),
C(B), C(E) and C(F) using the identity v ∈ C(w)⇔ w ∈ B(v). The other bunches are obtained

4

similarly:

B(A) = {A,B,E, F}
B(B) = {A,B,E, F}
B(C) = {C,E, F}
B(D) = {C,D,E, F}
B(E) = {E}
B(F) = {E,F}
B(G) = {E,G}
B(H) = {E,F,G,H}

1.4.3 Preprocessing Time

The total preprocessing time is dominated by the computation of the clusters. Let E(v) denote the
set of edges touching the vertex v. Then the total preprocessing time is∑

w∈V
(|E(C(w))| · TdecreaseKey + |C(w)| · (TdeleteMin + Tinsert)) (8)

=
∑
w∈V

(|E(C(w))|+ |C(w)| lg n) (using a Fibonacci Heap) (9)

=
∑
w∈V
|E(C(w))|+ lg n

∑
v∈V
|B(v)|. (10)

For the first term:∑
w∈V
|E(C(w))| (11)

≤
∑
w∈V

v∈C(w)

|E(v)| (also count intra-cluster edges) (12)

=
∑
v∈V

w∈B(v)

|E(v)| (since v ∈ C(w)⇔ w ∈ B(v)) (13)

=
∑
v∈V
|B(v)| · |E(v)| (since the sum doesn’t depend on w) (14)

=O(
∑
v∈V

kn1/k · |E(v)|) (since Exp[|B(v)|] = kn1/k) (15)

=O(kmn1/k) (since
∑
v∈V
|E(v)| = 2m) (16)

is the expected running time.
For the second term:

lg n
∑
v∈V
|B(v)| = lg n

∑
v∈V

kn1/k = O(kn1+1/k lg n) (17)

5

in expectation and the conversion of clusters to bunches takes
∑
|B(v)| = O(kmn1/k) time.

Computing the δ(Ai, v) and pi(v) takes overall O(k(m+ n lg n)) time. Hence the total running
time is

O(kn1/k(n lg n+m)) (18)

1.5 Answering Queues

Distance queries can be answered as before (see Algorithm 2). When the distance query algorithm
terminates with w ∈ B(v) so v ∈ C(w).

Lemma 1. For any v ∈ V and 0 ≤ i ≤ k − 1 : pi(v) ∈ B(v).

Proof. (By induction on i). For i = k − 1, pk−1(v) ∈ Ak−1 ⊆ B(v), so the claim is true. Suppose
therefore that i < k − 1 and that pi+1(v) ∈ B(v). If δ(v,Ai) = δ(v,Ai+1) we set pi ← pi+1, so
pi(v) ∈ B(v). Otherwise δ(v,Ai) < δ(v,Ai+1), since δ(v, pi(v)) = δ(v,Ai), pi(v) will be inserted
into B(v) by the definition of bunches.

Now since u, v ∈ C(w), the shortest path tree of C(w) contains a path from u to v of length at
most δ(w, u)+δ(w, v). We return this path by moving in parallel from u and v towards w, stopping
when an already visited node (the LCA of u and v) is reached.

Algorithm 2 Distance Query as used before

function distk(u,v)
w ← u
i← 0
while (w 6∈ B(v)) do

i← i+ 1
w ← pi(v)
(u, v)← (v, u)

return δ(w, u) + δ(w, v)

6

2 Chapter 7: String B-Trees

The purpose of String B-Trees is to index a large collection D = {S1, . . . , Sk} of strings over Σ of
total length N =

∑
i |Si| such that substring-queries of the form

find(P,D) : return all occurrences of P ∈ Σ∗ in D (19)

can be answered efficiently. For the RAM model, we already know that suffix trees solve this task
optimally (at least for static collections of strings). In this chapter, we shall concentrate on the
external memory model, which basically measures the performance by the amount of I/O that is
generated and not by the time the CPU spends on the instance.

Further reading:

The String B-Tree: A New Data Structure for String Search in External Memory and its
Applications.

by Paolo Ferragina , Roberto Grossi

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5939

2.1 The EM-Model

M ∞
BCPU

RAM
ext
mem

The external memory model is like the RAM model of computation,
except that the fast internal memory (RAM) is limited to M words,
and we have instances of size N >> M . Additionally there is
an external memory (disks) with unlimited size. An IO-operation
transfers a consecutive block of B words from the external to the
internal memory, where it can be manipulated by the CPU as usual.
The same amount may also be written back from RAM to disk to
make room for new data.

The performance of an EM-algorithm is the number of disk ac-
cesses it makes. As a simple example, consider the trivial task of
reading a string of length N > M that is stored consecutively on
disk. This takes O(N/B) IO’s in the EM-model.

2.2 Basic String B-Tree Layout

Let the strings from D be stored continiously on disk. We identify a string by its starting position.

Example

D = {alan,turing,ate,an,acid,apple}, B = 8

a l a n t u r i n g a t e a n a c i d a p p l e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

B = 8

7

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5939

The basic idea of String B-trees is to store the sorted suffixes in a B-tree layout with branching
factor b = Θ(B), where b is chosen such that the information stored at one B-tree node fits into on
size B disk block.

An internal node v with children v1, . . . , vb stores separators L(vi) and R(vi) for every 1 ≤ i ≤ b,
where L(vi) (or R(vi)) is the lexicographically smallest (or largest respectively) suffix stored below
vi.

The tree can be best described bottom-up: Let b lexicographically consecutive suffixes form a
leaf (the last leaf might contain up to 2b strings). Then b′ consecutive leaves (from “left to right”)
form the nodes on level 1 (where b ≤ b′ ≤ 2b) and so on, until we have built the root with ≤ 2b
children.

Example

D = {alan,turing,ate,an,acid,apple}, b = 4

20 1 17 3 25 13 21 23 29 15 11 22 9 2 28 18 4 10 27 26 8 14 6 7

20 3 25 23 29 22 9 18

20 18 4 26 8 7

Note that the definition of String B-trees leaves some flexibility. For example, we could also
have included the last two leaves directly into the node containing the first four leaves, leading to
a tree of depth one less than the one shown in the picture. This flexibility is necessary to allow for
fast insertion and deletion of strings to/from D.

Given the basic String B-tree layout, we could now search the tree in a top-down manner, at
each node deciding by a search of P within the L(v1), R(v1), . . . , L(vk), R(vk) if and where the
search should be continued. The problem with this approach is that it creates a high number of
IOs: if the tree has height h = lgbN and the separators are searched in a binary manner, then this
would create order of

h · |P |
B
· lgB =

|P |
B

lgN (20)

IOs, which is worse than optimal by a factor of lgN . Nonetheless, two such searches will identify
the interval of all occurrences of P in D, which can be reported in additional O(occB) IOs.

8

	Chapter 6: Distance Oracles (ctd.)
	Short Note: Dijkstra's Algorithm
	Computing (Ai,v) and pi(v)
	Example

	Bunches and Clusters
	Computing Clusters
	Computing Bunches from Clusters
	Example
	Preprocessing Time

	Answering Queues

	Chapter 7: String B-Trees
	The EM-Model
	Basic String B-Tree Layout

