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Deutsche Zusammenfassung

Deutsche Zusammenfassung
Die vorliegendeArbeit befasst sichmit demProblemder fehlertolerantenGeoreferenzierung.
Mit Georeferenzierung oder Verortung (englisch: Geocoding) bezeichnet man die Zuweisung
raumbezogener Daten zu einemDatensatz. Anwendung findet dies beispielsweise in Online-
Routenplanern (z.B. Google Maps, ADACMaps etc.), Navigationssystemen oder zunehmend
auch in Mobiltelefonen, aber auch im Gesundheitswesen und im Rahmen polizeilicher Er-
mittlungen.

Im folgenden Text wird das Problem behandelt, textliche Beschreibungen von Postadres-
sen einemtatsächlichenAdressdatumzuzuordnen, d.h. einer Straßeund einemOrt. Schwierig-
keiten ergeben sich durch Eingabefehler, wie z.B. Tippfehler. Wir präsentieren Algorithmen
und Datenstrukturen, die sich solcher Probleme annehmen und die automatische Korrektur
von Fehlern vornehmen.

Der Hauptteil der Arbeit gliedert sich in zwei Teile. Kapitel 2 auf Seite 8 behandelt das Pro-
blem des approximate dictionary matching, zu deutsch etwa unscharfe Suche in Wörterbuchern.
Wir beschreiben einen Index, der solche unscharfen Anfragen auf Wörterbüchern in sehr
kurzer Zeit beantwortet. Zu einem vorgegebenen Wörterbuch und einer gegebenen Anfra-
ge werden alle Zeichenketten bestimmt, die starke Ähnlichkeit mit der Anfrage aufweisen.
Als Maß für die Ähnlichkeit wird hierbei L-Abstand verwendet. Die in diesem
Teil präsentierten Algorithmen und Datenstrukturen sind weitgehend unabhängig vom Pro-
blemderGeoreferenzierung, der Index bietet sich also auch für andere Anwendungen an. Das
Hauptaugenmerk lag darauf, sehr geringe Anfragezeiten zu erzielen, was auch gelang, wie in
Abschnitt 2.8 auf Seite 25 experimentell gezeigt wird.

Kapitel 3 beschreibt unseren Ansatz zur Georeferenzierung von Postaddressen. Um mög-
lichst schnell zu relevantenErgebnissen zukommen, verwendenwir Techniken, umdenSuch-
raum möglichst früh so zu beschneiden, dass irrelevante Adressdaten nicht mehr behandelt
werden müssen. Wir erreichen dies einerseits durch Anwendung bekannter Verfahren aus
demGebiet des InformationRetrieval, wie z.B. durchdie Bestimmungder inversenDokument-
häufigkeit (IDF) von Suchbegriffen. Außerdem nutzen wir geografische Informationen aus,
die den Adressdaten zugrundeliegen, sowohl um die Suche zu beschleunigen als auch um die
Qualität der Ergebnisse zu verbessern. Zur Bewertung der Qualität der Ergebnisse wird eine
einfache Heuristik präsentiert, die ebenfalls auf Levenshtein-Abstand und IDF basiert.

Die Leistungsfähigkeit der Algorithmen wird in Abschnitt 3.8 auf Seite 52 durch empiri-
sche Analyse belegt. Die Testdaten umfassen etwa 80500 deutsche Städte sowie etwa 444000
Straßen. Experimente wurden sowohlmit zufällig erzeugten Eingaben durchgeführt als auch
mit tatsächlichen Eingaben, wie sie von Benutzern eines existierenden Georeferenzierungs-
systems aufgezeichnet wurden.

Zum Abschluss werden Vorschläge für künftige Untersuchungen gegeben. Insbesonde-
re die Erweiterung auf andere, weniger restriktive Adressschemata (z.B. “Schule in der
Innenstadt” oder “Kreuzung Poststraße, am Rathaus”) könnten die Benutzerfreund-
lichkeitweiter verbessern, und eswäre interessant zuuntersuchen, ob solcheAnfragenunter-
stützt werden könnten, ohne die hier vorgestellten Datenstrukturen und Algorithmen signi-
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fikant abändern zumüssen bzw. ohne zu viel Laufzeit einzubüßen. Ein weiterer lohnenswer-
ter Schritt wäre die Anpassung der Algorithmen an die Möglichkeiten moderner Hardware,
wobei sich natürlich die Frage der Parallelisierbarkeit stellt.

Diese Arbeit wurde als externe Diplomarbeit bei der PTV AG [1] in Karlsruhe verfasst.
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1 INTRODUCTION & PREVIOUSWORK

1. Introduction & Previous Work
is work describes a fault-tolerant algorithm for geocoding postal addresses. It consists
of two main parts: e description of a fault-tolerant dictionary index and its application
in the domain of geocoding. In Section 1.1 we describe the approximate dictionary matching
problem and previous approaches. Section 1.2 on page 5 gives an overview over the process
of geocoding: What it is, why it is important, and what is the current state of the art. While
fault-tolerant geocoding usually relies on a fault-tolerant (or fuzzy) index, those domains are
largely independent, i.e., our fuzzy index is not only useful in the domain of geocoding, and
our geocoder would also work with any other fuzzy index. erefore we will describe the
index data structure and our geocoder separately. Design decisions that were taken because
of particular properties of the index / the geocoder are mentioned in the text.

In Section 2 on page 8we present our approach to the approximate dictionary problem. We
describe the construction of the data structure and the lookup procedure and conclude with
an experimental Analysis. Section 3 on page 30 explains how we use the fuzzy index to build
a fault-tolerant address search. Again, we conclude with an experimental evaluation of our
algorithm. Furthermore we develop a rating heuristic, described in Section 3.7 on page 46,
that we will use to rank results according to their quality. Finally, we give our conclusions
and ideas for future work in Section 5 on page 62.

1.1. Approximate Dictionary Matching
e approximate dictionary matching problem is to find an approximate occurence of a string
in a potentially large set of strings called a dictionary. is problem arises in many appli-
cations, online search engines are a prominent example. e problem is closely related to
the approximate string matching problem, where the task is to find approximate matches of a
short pattern in a potentially much longer string. Most of the techniques mentioned in the
following apply to both problems, hence we will not distinguish between related work that
centers on dictionary matching and work that centers on string matching.

If w and w′ are words over some alphabet Σ, they match approximately if and only if their
distance is small in respect to some distance metric. Popular metrics in this context include
Hamming distance or Levenshtein distance [23], which is often called edit distance. In this
work we will focus on Levenshtein distance. Two strings w and w′ are said to have Leven-
sthein distance d if w can be transformed into w′ by at most d single character insertions,
substitutions, or deletions. e Levenshtein distance fulfills the requirements for a metric
(non-negativity, identity of indiscernibles, symmetry, triangle inequality) and defines amet-
ric space on the the set of all strings.

e approximate dictionary matching problem can be tackled as an offline problem, where
it is allowed to apply preprocessing on the dictionary to speed up queries, or as an online
problem, where it is not possible to process the dictionary beforehand. To support sublinear
query times, we focus on the offline problem only, which is also called the indexed version of
the problem.
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1.1 Approximate Dictionary Matching 1 INTRODUCTION & PREVIOUSWORK

Many successful methods for the approximate dictionary and string matching problems
are based on filters [18, 34]. For most queries, only very small parts of the dictionary come
into consideration as possible matches. A filter is an algorithm which is used to seperate
these parts from those that cannot possibly result in an approximate match. Note that it is
not necessary that each mismatch be dismissed by the filter. e remaining candidates then
have to be verified by a non-indexed approximate stringmatching algorithm. ere is usually
a trade-off between the accuracy of the filter (i.e., how many mismatches it catches) and the
time that is needed to evaluate the filter criterion. A filter is called lossless if it never discards
an approximate occurence of a query. e filter we present here is lossless.

We present an index data structure that allows fast lookups of words contained in a dictio-
nary. It uses a filter that is based on a technique called FastSS [40] and centers on the idea
of deletion neighborhoods which were already described in [28]. It is therefore not unlike the
neighborhood generation algorithm [30], but uses only deletions.

Some filtering algorithms split the input words into smaller parts to reduce the complexity
of the problem. In [18] those are called factor filters. We use a simple splitting rule in our
algorithm to reduce the size of the index, as described in [17] and in Section 2.4 on page 15.

A similar approach splits words into n-grams [32, 43], i.e. (potentially overlapping) sub-
strings of length n. E.g., the word “keyboard” breaks down to the 3-grams “key”, “boa”,
and “ard”. Given the length of a query string q and the edit distance to a word w one can
derive a lower bound on how many n-grams q and w must share.

More sophisticated methods use suffix trees [45]. A suffix tree is a data structure that rep-
resents all suffixes of a text in linear space and can be constructed in linear time [42]. Origi-
nally suffix trees have been used for exact searches, but they have been successfully adapted
to approximate string searching [41]. Although the suffix tree has space O (n) for a text with
n characters, the constant factors are quite high, which is why it is often substituted by a
similar but simpler data structure, the suffix array [25].

Other methods exploit the fact that edit distance defines a metric space on the set of all
words in an alphabet Σ [8, 37]. One can then use properties of the metric space, such as the
triangle inequality, to ease distance computations. In [6] the authors divide these approaches
into two classes:

• Clustering algorithms, which divide the search space into a set of clusters, such that
objects inside of a cluster share some representative information, and

• Pivot-based algorithms, where an element x is chosen from the set of objects, and each
element stores its distance to x .

An example for a data structure that falls into both classes is the BK-Tree [4]. An element is
selected as the root node and the subtrees are identified by the distance of their elements to
the root node. e i-th subtree consists of all elements that have distance i from the root.
is technique is then applied recursively to the subtrees, until the number of elements in a
subtree falls under some threshold. Again, the triangle inequality is used to branch into or
cut subtrees. A candidate set of possible matches is built by the union of all leaves that are
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1 INTRODUCTION & PREVIOUSWORK 1.2 Geocoding

reached by the tree traversal. A rather weak result is that BK-Trees and its refinements need
O (nα), 0 < α < 1, comparisons and node traversals on average [37]. See Chávez et al. [6]
for a survey. An experimental evaluation of BK-Trees and several variants [29] reports on
the size of the search space that is visited depending on the allowed error distance. Previous
experiments on BK-Trees were done on a set of 100 000 English words. e experiments
report on a nearly linear growth of the visited search space going up from5% for edit distance
0 to slightly more than 40% for a distance of 4.

To speed-up edit distance computation itself, research focused on simple and practical
bit-vector algorithms that compute a bit representation of the current state-set of the k-
difference automaton for the query [46]. Words of length n with k and fewer differences can
be matched against a query of size m in either O (nmk/w) or O (nm logσ/w) time where w
is the word size of the machine, and σ is the size of the pattern alphabet. ese algorithms
have been further improved to yield a bound of O (nm/w) and for arbitrarily large m there
exists an algorithm that runs in expected time O (kn/w) [31]. is is much faster than the
classic dynamic programming approach, which needs O (nm) time. In our application we are
only interested in the distance if it is smaller than a threshold k, and it then suffices to com-
pute a diagonal stripe of width 2k+1 in thematrix, yielding an algorithm that runs in O (kl)
time, where l is the length of the shorter string [14].

1.2. Geocoding

e term geocoding decribes the act of turning a textual description of a location, such as a
postal address, into an absolute geographic reference. It forms a fundamental component
of spatial analysis and finds application in a wide variety of contexts, such as crime analysis
[35,36], public health and epidemiological research [20,21], or route guidance systems.

e increasing availability of reference datasets and freely accessiblemapping services such
asGoogleMaps orMicrosoft BingMaps has turned geocoding to a ubiquitous service. In con-
trast, geocoded data used to cost $4.50 per 1000 records in the mid-eighties [19] and didn't
nearly provide the spatial accuracy of today's services. While the use of geographic informa-
tion systems was previously limited to professionals only that were aware of the difficulties
and limitations of the geocoding process [38], today's freely available online services don't
require much knowledge from the user.

Goldberg et. al [11] identify four fundamental components in the process of geocoding:
the input, output, processing algorithm, and reference dataset. e input is the decribed en-
tity the user wishes to have geographically referenced, and said description must contain
attributes that have previously been assigned to some datum in the reference dataset that
represents the geographic reference. e output format can reach from simple geographic
codes to complex two- or threedimensional geospatial entities (lines, polygons, polytopes
etc.). e processing algorithms have moved from simple feature assignment to complex in-
terpolation algorithms using diverse data sources. e accuracy and quality of the algorithms
depend on the underlying reference dataset.
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1.2 Geocoding 1 INTRODUCTION & PREVIOUSWORK

Most geocoding services geocode postal addresses only. Postal addresses are how people
locate and navigate themselves [10], hence it is sufficient for many applications to restrict
the geocoder to this case. Although even cheap cellular phones will have access to position-
ing systems like GPS or G in the near future, postal addresses will likely remain the
prelevant form of location data in many contexts, due to their inherent redundancy and be-
cause they are more easily remembered than geocoordinates.

While postal addresses are themost common data to be geocoded, modern geocoders have
attempted to process many different kinds of locational descriptions, such as points of inter-
ests, street intersections, zip codes, or even freeform textual descriptions of locations (as in
“Italian restaurant near main station”) [11,39].

e output of a geocoder is usually a geometric entity such as a point (e.g. for an address),
a line (e.g. for a street), or a polygon (e.g. for a town). is often requires the use of inter-
polation algorithms when the output geography is not part of the reference data [9,11]. For
example one may not want to store the precise coordinate of every street number in the ref-
erence dataset to save space, or one could calculate the coordinate of a street intersection on
the fly.

In the process of geocoding there are several possible sources of error – geocoding is an
inherently uncertain process. Quantifying the error is therefore a difficult task, some of the
questions that arise are:

• Match rate: What percentage of the processed queries could be matched to a datum in
the reference dataset?

• Correctness: When can we classify a match as a “correct” match for a given query?

• Positional accuracy: For a correct match, how accurate is the returned coordinate (or
line, or polygon etc.). is is difficult especially for interpolated data where ground
truth is not available.

• Quality of the input: Who is responsible for the input? Was does the user know about
the deficiencies of the geocoder? Can the error be attributed to the geocoder or was
the input “too bad”?

In [38], the authors compare and evaluate several online geocoding services according to
the metrics match rate, positional accuracy, and similarity. Similarity in this case refers to the
pairwise distance of matches among the five compared services. e tests were performed
using address data from the Environmental Protection Agency.

To increase match rates, modern geocoders try to correct certain classes of errors, such as
spelling errors. “Fuzzy” techniques have been developed that use word stemming, phonetic
algorithms such as Soundex, substitution tables or distance metrics such as Levensthein or
Hamming distance. Recent works concentrate on the less restricting Levenshtein Distance
[5,16,39]. Phoneticmethods often suffer from their restriction to certain languages; it would
be difficult to apply the Soundex algorithmon a dataset that contains both english and french
addresses.

6
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Correcting typing errors and the like tomatch some input query against a reference datum
is sometimes called data cleaning. In recent years methods have been developed that take
advantage of the spatial information underlying the data. In [16,39], a method is described
where each attribute (like for instance “school” or “station”) is associated with the spatial
union of all entities that share this attribute. Match candidates are then formed by the spatial
intersection of these unions (e.g. think of a query like “primary school near main station”).
e authors claim that their system is capable of supporting regions with widely varying
address formats, without region-specific customization or training. However, the average
lookup time of 170ms on a single metropolitan area leaves room for improvement, and it is
not clear how well their system scales to larger areas.

7



2 THE INDEX

2. The Index
e indexing method we present here is based on the observation that two words that are
similar with respect to edit distance must share a common subsequence of a certain length.
We will prove that formally in the following lemma, but first we have to introduce the no-
tation we will use. e edit distance between two words u and v over an alphabet Σ is the
minimal number of insertions, deletions or substitutions that we have to perform to trans-
form u into v. Note that we insert, delete or substitute only one character at a time. We
define the functions

ins : N×Σ×Σ∗→ Σ∗
del : N×Σ∗→ Σ∗
sub : N×Σ×Σ∗→ Σ∗

such that

• ins(n, c, w) inserts character c into word w after the nth character in w,

• del(n, w) deletes the nth character in w, and

• sub(n, c, w) substitutes the nth character in w with c.

For any two strings u, v ∈ Σ∗ with ed(u, v) = d, there must be a sequence of operations
op1, . . . , opd ∈ {ins, del, sub}, such that (opd ◦ · · · ◦ op1)(u) = v.

u := SURVEYS

sub(4,G, u) = SURGEYS=: u(1)

del(7, u(1)) = SURGEY=: u(2)

ins(5,R, u(2)) = SURGERY= v

⇒ ins(5,R, del(7, sub(4,G, u))) = v

Example 1: A minimal sequence of operations to transform SURVEYS into SURGERY.

Lemma 1. Let u, v ∈ Σ∗ be words with edit distance ed(u, v)≤ d. en there must exist a string
r ∈ Σ∗ that is a subsequence of both u and v and has length |r| ≥ max(|u|, |v|)− d. We call r a
residual string and u and v original strings.

Proof. We give an algorithm to obtain such a common subsequence r:
Let (opi ◦ · · · ◦ op1)(u) = u(i), i.e. u(0) = u and u(d) = v.
For i = 1 . . . d repeat:

8



2 THE INDEX 2.1 A Grapheoretical Point of View

• If opi = del(u(i−1), n), delete the character in u.

• If opi = ins(u(i−1), c, n), there must be an occurence of c in v that is “responsible” for
this insertion. Delete the occurence of c in v.

• If opi = sub(u(i−1), c, n), delete the character that would be substituted in u as well as
the character that would be matched in v.

In each step of the algorithm the distance between the compared words decreases by one
and the length of both words decreases by at most one. Hence, after d steps we arrive at a
common subsequence of length at least max(|u|, |v|)− d.

Furthermore, we call the set of all residual strings of a string s and edit distance d its
deletion neighborhood Nd(s). e deletion neighborhood for a given string s and edit distance
d can be computed by applying all possible combinations of d deletions on s. ere are

�|s|
d

�
such combinations.

d = 0 d = 1 d = 2
string _tring __ring

s_ring _t_ing
st_ing _tr_ng
… …
strin_ stri__

Table 1: e deletion neighborhood for s = ”string”, d ≤ 2. e underscores indicate the
positions where deletions were performed.

We can use this observation to construct an error-tolerant index that can be queried very
efficiently. Let D = {s1, . . . , sn}, si ∈ Σ∗ be a dictionary of words over the alphabetΣ. Given a
string w ∈ Σ∗ and a constant d ∈ N, our goal is to quickly return all words from D whose edit
distance to w is at most d. From the above lemmawe know that any word s that satisfies this
conditionmust share a residual string of a certain length with w. We call s ∈ D a candidate for
w if it has a residual string in common with w. Hence, it suffices to check the edit distance of
w to these candidates and our task is now to develop a compact data structure that enables
us to quickly find the set of candidates for a given query string.

2.1. A Graph Theoretical Point of View
We want to look at the problem from a graph theoretical standpoint.

Let

N(s) :=
d∪

k=0

Nk(s)

9



2.2 Construction 2 THE INDEX

and

R :=
∪
s∈D

N(s)

= {r ∈ Σ∗| ∃s ∈ D : r ∈ N(s)}
be the set of all residual strings for the dictionary D. en the graph

G = (R ·∪D, E)

E =
∪
s∈D

N(s)×{s}

is a directed bipartite graph. We can assume without loss of generality that R and D are
disjoint. If this isn't the case, it is trivial to alter the definition of R such that they are in fact
disjoint.

Finding the set of candidates for a query string w now equates to finding the nodes s ∈ D
that have an incoming edge coming from a node r ∈ (R∩ N(w)), i.e. r is a residual string of
w. See Fig. 1 on the facing page for an illustration.

2.2. Construction
Every edge in the graph G is directed from a residual string to an original string. To construct
the index, we will traverse a list of unique strings, i.e. no string will occur twice in this list.
For each string, we generate the deletion neighborhood. Each residual string gets its own
adjacency list, and when a string s is added to the index, we will append a pointer to s to
the adjacency lists of every residual string in N(s) (see Fig. 2 on page 12 for an illustration).
Pointers to the adjacency lists are stored in an array of size |R|. We use a hash function to
address them. For now let us assume that we can use a perfect minimal hash function, i.e. a
bijective function h : R→ {0, . . . , |R| − 1}.

During construction, it is convenient to be able to insert new edges in constant time, but
once the graph is complete, we want to switch to a more efficient representation. We use a
forward star representation, which is very compact and makes it possible to iterate quickly
over the outgoing edges of a node.

Simply put, it consists of two big arrays: edges of size |E| and first_edge of size |R|+1.
We copy the adjacency lists created during construction to the array edges, one after another.
e array of pointers is now called first_edge, and instead of pointers to adjacency lists, we
store for each node the position of the first edge leaving it. For a node v, its edges are stored in
edges, starting at position first_edge[h(v)] up to and excluding first_edge[h(v)+1].
See Fig. 3 on page 13 for an illustration.

2.3. The Query
e query is straightforward. Suppose that the graph as described above has been computed
in a preprocessing phase. We want to find all dictionary entries with edit distance at most

10
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sword swear world would

word swr wldwod orld swer

R

D

(a) A cutout from the Graph for a dictionary containing the words
”sword”, ”world”, ”swear” and ”would”.

R

D
sword swear world would

word swr wldwod orld swer

(b) e relevant subgraph for the query w = ”sewer”.

Figure 1: e dictionary and the residual strings modeled as a graph.

d from a word w ∈ Σ∗. We know that any word that matches w with at most d errors must
have length l with |w| − d ≤ l ≤ |w|+ d. From lemma 1 on page 8 we know that there must
be a residual string of length max{l, |w|} − d. Hence, the residual strings must be of length
l ′ with |w| − d ≤ l ′ ≤ |w|. erefore we must generate all residual strings of w with 0, . . . , d
deletions.

To find candidates for w, we simply compute its deletion neighborhood N(w) for up to d
deletions and query the index with each of the residual strings, as described in Algorithms 1
on the following page and 2 on page 14. If v is a candidate for a query w, that means that
they share a residual string r that was obtained by deleting at most d characters from v as
well as from w, therefore |v| − |r| ≤ d and |w| − |r| ≤ d. According to Lemma 2 on the
following page we know that ed(v, w) ≤ |v| − |r|+ |w| − |r| ≤ 2d. We still have to verify
which candidates have distance d or less (see Algorithm 3 on page 14)

11



2.3 e Query 2 THE INDEX

… … … … … … …

… 35

…

68

…

…

97

…

90

h(“strng”) = 2 h(“ths”) = 4 h(“et”) = 14h(“other”) = 9
…0

…1

…2

……

“another”35

……

“brother”68

……

“string“97

……

“yet”219

strings

……

“set“90
219

0 1 2 3 4 5 6 7 8 9 1110 12 13 14 15

Figure 2: A sketch of the data structure during construction, right after the string ”yet” has
been inserted.

Algorithm 1: FindCandidatesForString
Input : A string w.
Output: e set of all strings in D that share a residual string with w.

1 candidates← ;
2 Nw ← DeletionNeighborhood(w)
3 foreach r ∈ Nw do
4 Cr ← FindCandidatesForResidualString(r)
5 candidates← candidates ∪ Cr

6 return candidates

2.3.1. Properties of Residual Strings

It is easy to see that the existence of a common residual string of length max(|u|, |v|) − d
does not imply that ed(u, v) ≤ d. E.g. the strings ”yx” and ”xz” have a common residual
string of length max(2,2)− 1 = 1, but edit distance ed(yx,xz) = 2 > 1. But we can still
bound the edit distance:

Lemma 2. If r is a common residual string of u and v, ed(u, v)≤ |u|+ |v| − 2|r|.

Proof. Starting from u, we can arrive at r by deleting |u| − |r| characters from u. We then
obtain v by inserting |v| − |r| characters into r.

12
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“rst”

constant-time
access by 

residual stringfirst_edge

edges

“first”0

“word“1

“in“2

“index“3

……

……

…6

“rest“7

“rusty“8

…9

……

strings

…

…

“tren”
…

“rest” “rusty” “first”

…

80 … 5 …

h(“rst”) = 3 h(“tren”) = 4

… 7 8 0

Figure 3: e forward-star-representation of the graph. To save space, we store each string
only once. In edges we only maintain pointers.

Sincewe construct the index for up to d deletions, we know that a common residual string r
ofu and v implies that ed(u, v)≤ (|u|−|r|)+(|v|−|r|)≤ d+d = 2d. In a sense thefilter itself
“solves the approximate dictionary problem approximately” before the verification phase: it
returns all approximate matches with distance d and no matches with distance greater than
2d.

13
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Algorithm 2: FindCandidatesForResidualString
Input : A residual string r.
Output: e set of all strings in D that have r as a residual string.

1 candidates← ;
2 f irst ← first_edge[h(r)]
3 last ← first_edge[h(r) + 1]−1
4 for i← f irst to last do
5 candidates← candidates ∪ {edges[i]}
6 return candidates

Algorithm 3: FindSimilarStrings
Input : A string w and a threshold d.
Output: e set of all strings in D that have edit distance at most d to w.

1 candidates← FindCandidatesForString(w)
2 resul t ← ;
3 foreach s ∈ candidates do
4 if EditDistance(w, s)≤ d then
5 resul t ← resul t ∪ {s}
6 return resul t

We really have to consider each residual string of a word. In the case where ed(u, v) = d,
there may be only one common residual string, take e.g. the strings ”xbcde” and ”abcdx”
and d = 2. e only common residual string with up to 2 deletions is ”bcd”.

e following lemma formalizes how many residual strings two strings share at the least:

Lemma 3. Let N(w) :=
∪d

k=0 Nk(w) and N(u) :=
∪d

k=0 Nk(u) be the residual neighborhoods
of u and w and ed(u, w) = j ≤ d. If |N(w)|=∑d

k=0

�|w|
k

�
and |N(u)|=∑d

k=0

�|u|
k

�
, then

|N(w)∩ N(u)| ≥ µ j(u, w) :=
d− j∑
k=0

�
max{|w|, |u|} − j

k

�

Proof. If ed(u, w) = j, there exists a common residual string v of length max{|u|, |w|} − j.
is string can be obtained from u and w by j deletions. Any residual string of v with atmost
d − j deletions is also a residual string of u and w with at most d deletions.

14
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Corollary 4. If |N(w)∩ N(u)|< µ j(u, w), then ed(u, w)> j.

We can take advantage of this fact during the query. When a residual string r is hit during
the query with string u, every string that has a pointer from this residual string gets marked
as a candidate. But for a candidate w to have edit distance j or smaller to u, it must be hit
µ j(u, w) times. So, instead ofmarking every string that gets hit during a query, wemark only
those that get hit often enough. Note that this is different from the previous behaviour only
when searching for words with less than d errors, as µd(u, v) = 1.

2.4. Reducing the number of residual strings
Since there are

�|s|
d

�
residual strings in Nd(s), their number grows rapidly with the length of

s. For instance, a word s of length |s|= 30 and edit distance 3 has up to
�30

3

�
+
�30

2

�
+
�30

1

�
+�30

0

�
= 4526 residual strings. In comparison, a word of length 10 has only 176 residual

strings.
Fortunately we can use the greater length to our advantage. It is intuitively clear that in-

creasing the length of a string u under a fixed number of errors also leads to longer substrings
of u with few errors.

Lemma 5. Let u, v ∈ Σ∗ be words with distance d := ed(u, v) and u := u1u2 any partition-
ing of u. en there must exist a partitioning of w = w1w2 such that ed(u1, w1) ≤ ⌊d/2⌋ or
ed(u2, w2)≤ ⌊d/2⌋.

Proof. We can transform u into w by applying d edit operations on u:
Suppose that op1, . . . , opd are those operations, ordered “from left to right”. We first apply
the operations op1, . . . , opi that operate on u1. Notice that u2 remains unchanged during
these operations. If i ≤ ⌊d/2⌋, we're done. If i > ⌊d/2⌋, there remain only d − i < ⌊d/2⌋
operations to transform u2. We set w1 := (opi◦· · ·◦op1)(u1) and w2 := (opi+1◦· · ·◦opd)(u2).
en it is clear that ed(u2, w2)≤ ⌊d/2⌋.

Consider the query w = w1w2 and an indexed word u = u1u2 with ed(u, w) = d and
ed(u1, w1) ≤ ⌊d/2⌋ (the following arguments can be used in the same manner for the case
where ed(u2, w2) ≤ ⌊d/2⌋). If u was split during the indexing phase into u1 and u2, we can
retrieve u by a successful match of w1 against u1. What we don't know, however, is which
prefix of w we need to consider. Suppose that we always split words in the middle during the
indexing phase. en u1 is of length |u1| = ⌊|u|/2⌋. We can easily find a rough bound on the
length of the prefixes that we need to consider. Since the edit distance between u and w is d,
we know that

|w| − d ≤ |u| ≤ |w|+ d,
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and hence � |w| − d

2

�
≤ |u1| ≤

� |w|+ d

2

�
.

Since ed(u1, w1)≤ ⌊d/2⌋, we can infer

|u1| − ⌊d/2⌋ ≤ |w1| ≤ |u1|+ ⌊d/2⌋ ,
and further � |w| − d

2

�
− ⌊d/2⌋ ≤ |w1| ≤

� |w|+ d

2

�
+ ⌊d/2⌋ .

Weknow therefore thatw1 must be aprefixofw with length |w1| ∈ {⌊|w|/2⌋−d, . . . , ⌊|w|/2⌋+
d}. However, this bound is quite loose. We can do better by looking at what actually happens
to u1 when we perform edit operations on it.

To determine the length of w1, which canbe obtained fromu1 by atmost ⌊d/2⌋ changes, we
need to knowwhere the last character of u1 ends up in w. As the last character of u1 is located
right in the middle of u, it will be located “somewhere around the middle” of w. Let us take
a look on how different edit operations affect c (the last character in u1), and how they affect
the middle of the word. Let pu

c := ⌊|u|/2⌋ be a pointer that points after the last character of
u1 and pu

m := |u|/2 be a pointer to themiddle of u, and letδu := pu
m−pu

c ∈ {0,1/2} denote the
difference between those pointers in u. We want to see what happens to δ during different
edit operations. Let op(u) = u′:

• If op is an insertion, the middle of u′ will move a half step to the right, as the word
grows by one. Hence, pu′

m = pu
m + 1/2. If the insertion takes place in u1, the position

of c increases by one (pu′
c = pu

c + 1 and δu′ = δu − 1/2), otherwise it does not change
(pu′

c = pu
c and δu′ = δu+ 1/2).

a b c d e f g a b X c d e f g

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8

pum

puc

pu
�

m

pu
�

c

• If op is a deletion, the middle of u′ will move a half step to the left, as the word shrinks
by one. Hence, pu′

m = pu
m − 1/2. If the deletion takes place in u1, the position of c

decreases by one (pu′
c = pu

c − 1 and δu′ = δu − 1/2), otherwise it does not change
(pu′

c = pu
c and δu′ = δu+ 1/2).

• If op is a substitution, nothing changes in terms of δ.
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We are interested in the difference between pw
m and pw

c , i.e. δ
w . We can already see from

the argument above that each operation can increase or decrease δ by only 1/2. We perform
d operations, hence δu and δw will differ by at most d/2. We can show that more formally:

• If δw = pw
m− pw

c > 0, the end of w1 is right of the middle of w.

• If δw = pw
m− pw

c < 0, the end of w1 is left of the middle of w.

If ed(u1, w1) = d1 and ed(u2, w2) = d2, δ
w is maximized if we perform d1 deletions in u1 and

d2 insertions in u2. en,

δw = pu
m+ ((d2− d1)/2)− (pu

c − d1) = pu
m− pu

c + (d2+ d1)/2= δ
u+ d/2.

It is minimized if we perform d1 insertions into u1 and d2 deletions into u2. en,

δw = pu
m+ ((d1− d2)/2)− (pu

c + d1) = pu
m− pu

c − (d1+ d2)/2= δ
u− d/2.

Since δu ∈ {0,1/2}, δw is bounded by−⌊d/2⌋ and ⌈d/2⌉.
Instead of querying the index with w, we can query it with the prefixes of length |w1| :=⌊|w|/2⌋ − ⌈d/2⌉ , . . . , ⌊|w|/2|⌋+ ⌈d/2⌉ and, along the same line of argumentation, with the

suffixes of length |w2| := ⌈|w|/2⌉ − ⌈d/2⌉ , . . . , ⌈|w|/2|⌉+ ⌈d/2⌉. Hence we have to treat at
most d + 1 prefixes and d + 1 suffixes.

Naturally there is a trade-off: Usually, most of the residual strings for w will have few
original strings. e residual strings of w1 and w2, however, will match any string of the
form u := x y where x is similar to w1 or y is similar to w2. is is especially the case for
many kinds of real-world data that consist of strings with common prefixes or suffixes. ink
of german city names, for example; ere are quite a lot of cities in Germany whose names
end in the suffix ”stadt”. It is therefore crucial that the strings that we split be of a certain
length. Our experiments show that it is best to split only those words that are longer than
a certain threshold. e threshold at which we consider words too long and split them is a
parameter that affects construction time, query time and the space needed by the index. We
will determine it in our experiments for several dictionaries.

2.5. Indexing Tokens
For our geocoding application, we want to index not only single words, but also strings that
consist of several words or tokens. Take for example the string ”this is a string”. We
could just index the whole string as it is, because our index does not handle whitespace dif-
ferently from any other character. But then we could not return ”this is a string” as a
candidate for the query ”string”— the edit distance is way too big. To remedy this short-
coming, we extend our data structure to index tokens instead of whole strings. A token in this
context is any contiguous substring that contains only letters, i.e. it is free from whitespace,
hyphens etc.

To explain the modifications on the data structure, let us look at the process of inserting
the string s :=”this is a string”. We will consider the unaltered index first: Remember
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that we keep each distinct string only once in a list. Each residual string of ”this is a
string” will get a pointer to the position of s in this list.

In the altered index we will not only keep a list of the strings, but also a list of all tokens
that appear in the strings. e string ”this is a string” will no longer be pointed to
by any residual string, but by the tokens ”this”, ”is”, ”a”, and ”string”. Each token on
the other hand will be pointed to by its residual strings, i.e. ”strng” points to ”string”
which in turn points to ”this is a string”. is is much easier to follow with the help of
Figure 4 on the facing page.

2.6. Implementation Details
In a forward-star representationof a directed graph, thenodes are usually consecutively num-
bered. is has the benefit of being very space-efficient, and it takes only constant time to
retrieve the first and last edge leaving or entering a node: If the node's number is v, the edges
incident to it can be found in edges at the positions first_edge[v] to first_edge[v+1].

In our data structure, we store only forward edges, i.e. edges leaving the nodes that cor-
respond to residual strings. To simplify matters, we assumed that we could use a minimal
perfect hash function to retrieve such a consecutive numbering of these nodes. is is, how-
ever, not how it is really implemented.

Actually, first_edge is an array whose size µwe choose ourselves. We use the hash func-
tion to map a residual string to an integer, and take the resulting integer modulo the size
of the array to find a slot where we can store the edges leaving that residual string. In the
general case we will get a considerable amount of hash collisions, depending on the quality of
the hash function as well as the size of the array. We choose not to resolve those collisions:
Suppose the residual strings r1 and r2 occupy the same slot in the array, i.e. h(r1) ≡µ h(r2).
en, a query string with residual string r1 will return not only the original strings for r1, but
also the original strings of r2. e same holds true for a query string with residual string r2.
is is because we cannot decidewhich residual stringwas responsible for placing a candidate
into a given slot without further information. We choose to simply ignore this problem. Our
index will still work correctly, but the average size of a candidate set increases as the number
of hash collisions increases. Of course, we will have to domore edit distance checks, but they
should be fast: If we choose a good hash function, it is unlikely that r1 and r2 are very similar
to each other. Hence, original strings for r1 and r2 should also be dissimilar. erefore, we
can often abort the edit distance computation early.

Typically wewould choose the size of first_edge to be bigger than the number of residual
strings tominimize hash collisions. ismeans that there will inevitably be gaps in the array.
Priorwe stated thatwe could alwaysfind the edges to anode v inedges[first_edge[h(v)]]
up to and excluding edges[first_edge[h(v)+1]], but this is no longer true: e field
first_edge[h(v)+1] may not be occupied by any residual string. To allow for finding the
last edge in constant time, we implement a list-like structure on the array. If there is a gap
between first_edges[i] and first_edges[j], we set first_edges[i+1] = -j (see Fig-
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first_edge_strings

edges_strings

…0

“this is a string“1

…2

……

“another string“35

……

……
“string with four 

tokens“97

……

……

……

strings

“this is a string” 

first_edge_tokens

edges_tokens

80 5 …

2 4 12

6… 11 …

1 … 35 … 97

h(“strng”) = 3 h(“strin”) = 9

h(“strung”) = 2 h(“strong”) = 14
h(“string”) = 4

Figure 4: A sketch of the altered data structurewith the indexed string ”this is a string”.
Following the arrows from top to bottom, we can see that the tokens belonging to
residual string ”strng” are located in edges_tokens at positions 5 to 7. ese
tokens are ”strung”, ”string”, and ”strong”. Moreover we can find the strings
containing the token ”string” in edges_strings from positions 6 to 10. One of
those strings is our original string ”this is a string”.
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ure 5). is way we can traverse the array without having to traverse the gaps, needing only
constant time per step.

gaps

72 12 13

7-2 2 -4 -9 12 -14 13

Figure 5: We implement a singly-linked list to bridge gaps in the array.

2.6.1. Generating Residual Strings

To generate the residual strings rs(w, d) for a given string w = vx , v ∈ Σ∗, x ∈ Σ and d
deletions, we implement the following recurrence:

rs(w, 0) = {w}, (1)

rs(w, d) = ;, if |w|< d, (2)

rs(vx , d) = rs(v, d − 1)∪ {ux |u ∈ rs(v, d)} (3)

We use dynamic programming to avoid repeatedly computing the same sets, hence each set
rs(v′, d ′) that appears on the right side of (3) has to be computed only once. Let us first
look at the cost that arises after the recursive calls have returned. We then have to unify
the two sets. If |w| = n, then both sets consist of O (nd) residual strings. To compute the
union, we have to sort both sets, which can be done in time O (n ·nd log nd) = O (dnd+1 log n)
(a comparison takes time linear in the length of w). Hence, we know the “direct” cost that
arises from the computation of a set rs(w,d), and it depends only on d and on the length of
w, not on w itself. We therefore define

c i
n := O (ini+1 log n)

as the direct cost that is associated with a string of length n and i deletions. To compute
the complete cost, we need to know how many sets rs(w′, d ′) will be generated. Note that in
(3), both recursive calls are performed on v, which is a prefix of w, therefore we only need to
consider sets rs(w′, d ′) where w′ is a prefix of w and d ′ ≤ min{|w′|, d}. en we can bound
the total cost by

n∑
m=1

min{m,d}∑
i=0

c i
m < n(d + 1) · cd

n = O (d2nd+2 log n).
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2.6.2. Edit Distance

As we measure similarity between strings in terms of edit distance, we need a way to com-
pute the edit distance between two given strings. e classical algorithm to compute the
Levenshtein-Distance is based on dynamic programming and computes the edit distance be-
tween two words u and v in O (|u| · |v|) time and O (min{|u|, |v|}) space.

In our application we usually only need to know if ed(u, v)≤ d for some constant d, which
means that we can abort the computation as soon as we know that the edit distance between
u and v is at least d+1 (see Fig. 6). We can also directly abort the computation if ||u|−|v||> d.

c o n s t r u e

0 1 2 3 4 5 6 7 8

1 0 1 2 3 4 5 6 7

2 1 0 1 2 3 4 5 6

3 2 1 0 1 2 3 4 5

4 3 2 1 1 1 2 3 4

5 4 3 2 2 2 1 2 3

6 5 4 3 3 3 2 2 3

c

o

n

t

r

a

7 6 5 4 4 4 3 3 3c

8 7 6 5 5 4 4 4 4t

d

9

8

7

6

5

4

4

4

4

Figure 6: e dynamic programmingmatrix is filled column-wise from left to right. emin-
imal value in each row or column is a lower bound on the edit distance of the com-
pared words. If we want to check if the edit distance between ”construed” and
”contract” is at most 2, we can abort the computation in the penultimate col-
umn.

An interesting extension to theLevenshtein-Distance is theDamerau-Levenshtein-Distance
that takes into account not only insertions, deletions and subsitutions, but also transposi-
tions of characters. In his seminal work [7] Damerau states that more than 80% of human
misspellings fall into these classes of error. e Damerau-Levenshtein-Distance can also be
computed in O (|u| · |v|) time [44].

ere have been developed faster methods that use bit-parallelism, which could be used to
further improve our index [33].
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2.6.3. The Tokenizer

In our application, we often have to split a string into tokens, i.e. contiguous strings of char-
acters, delimited by whitespace, hyphens, colons etc. Since we tokenize the strings already
during the preprocessing phase, it is not necessary to do the same work again in the query
phase. Instead, we can store for each token the position of its first character and its length.
e strings in our dictionary are rather short, so this information fits into two Bytes per to-
ken (see Fig. 7). is is of course not possible for the query string. ere are some tokens

D r . - M i c h a e l - F i s c h e r - S t r a ß e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

first length

0 2

4 7

20 6

12 7

Figure 7: We can store information about the tokens to speed up the tokenizing during the
query phase.

that receive a special treatment. In the setting of geocoding, we will use the index to retrieve
street names. In Germany, about half of the street names have the suffix ”straße”, which
is german for street or road, and there are other similar suffixes such as ”weg”, ”gasse”
etc. Sometimes these suffixes are separated from the street name by a hyphen or a blank
(as in ”Longué-Straße” or ”Rintheimer Straße”) and sometimes they are not (as in
”Hauptstraße”). ere is no fixed rule as to when one has to use whitespace or hyphens,
hence we cannot expect the user to know how the respective street is filed in our index. We
want to treat ”Longué-Straße” the same as ”Longuéstraße”. We do this by repeatedly
querying an index that contains only the special tokens for different suffixes of a string. ere
are more advanced methods to check this, e.g. based on finite automata [2], that can check
for several tokens at once in time linear in the length of the suffix.

e tricky part is to identify special tokens that contain errors. Consider a special token t
and an erroneous version t ′ of that token with ed(t, t ′)≤ d. en, |t|− d ≤ |t ′| ≤ |t|+ d. If
w = vt is a street name that contains a special token and w′ = v′ t ′ is an erroneous version
of w, we don't know exactly where to split w′. Consider the following example:
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w = Musterstrasse, w′ = Mustersxtrasse

If ”strasse” is the longest special token in our index and ”weg” is the shortest, and if we
want to allow one error in a special token, we have to look at the suffixes of length 2, . . . , 8.
We will find that

ed(strasse,sxtrasse) = 1

ed(strasse,xtrasse) = 1

ed(strasse,trasse) = 1

ed(gasse,rasse) = 1

ed(gasse,asse) = 1

Let w′ = v′ t ′, where t ′ is the erroneous version of a special token. en, v′ ∈
{Muster,Musters,Mustersx,Mustersxt,Mustersxtr}.

Example 2: A query where we cannot easily determine the correct version for a split. e
special token ”straße” is internally represented as ”strasse”, because many
people use the latter version. In Switzerland the letter 'ß' is not used at all, and
it is always written as 'ss'.

We solve this problem by splitting the word into overlapping parts. In the above example,
we would split ”Mustersxtrasse” like this:

Mustersxtrasse→ (Mustersxtr,sxtrasse)

Since we are not sure which parts of ”sxtr” belong to the prefix and which belong to the
suffix, we leave them in both the suffix and the prefix and mark them as optional. When per-
forming a lookup with the string ”Mustersxtr”, we have to query the index for the strings
”Muster”, ”Musters”, ”Mustersx”, ”Mustersxt”, and ”Mustersxtr”, if we want to make
sure that we actually hit the correct candidate. During the indexing phase, the candidate
”Musterstrasse”will have been correctly split into the pair (Muster,strasse), which we
will nowfind as a candidate. To compute the distance between”Muster” and”Mustersxtr”,
we match “as much as we need”, i.e., we return the smallest edit distance between ”Muster”
and ”Musterx”, where x ∈ {ϵ,s,sx,sxt,sxtr}.

We treat the tokens ”sxtrasse” and ”strasse” similarly, but perform the match back-
wards, i.e., we match ”essartxs” against ”essarts”. e added cost for the extra lookups
is quite moderate.
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Figure 8: e best way to match ”Mustersxtr” against ”Muster” is to match none of the
optional characters.

2.7. Analysis
ere are various parameters that affect the memory requirements of the index, and there
is clearly a trade-off between memory and query time. If we don't use perfect hashing, one
of the parameters is the size of the array first_edges, i.e. the hash-table. Since we don't
resolve hash collisions, a too small choice of the size for this array will result in big candidate
sets that have to be verified. e split parameter, on the other hand, can be used to reduce
the number of residual strings as well as the number of edges pointing from residual strings
to original strings, thus allowing us to choose a smaller hash table.

2.7.1. Memory Consumption

e size of the data structure is dominated by the arrays edges and first_edge. To bound
the number of edges, notice that a word w can have at most

∑d
k=0

�|w|
k

�
= O (|w|d) residual

strings for d errors, each of which gets an edge to the original word. e size of the array
first_edge corresponds to the number of distinct residual strings if we use perfectminimal
hashing, or to whatever size we choose it to be if we allow hash collisions.

To give a bound on the total number of residual strings for a dictionary D, we must know
the distribution of words in the dictionary. Let αl be the number of words in D with length
l. en the total number of residual strings is bounded by

∑
l≥1

αl

d∑
k=0

�
l

k

�
.

In some of our sample dictionaries (e.g. the titles of the articles in the english Wikipedia
or the novel “MobyDick”, the distribution of word lengths resembled a binomial distribution
(see. Figure 9 on page 26).

Consider the following experiment: We want to generate a string s with length at most n.
We throw a coin n times that shows head with probability p, and add a character to s each
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time the coin shows head. en the length of s is a random variable X whose distribution is
binomial with parameters n and p.

If we assume that the length of the strings in a dictionary D is a random variable X that
follows a binomial distributionwith parameters n and p, then the expected number of strings
with length l is

E[αl] = |D|Pr[X = l] = |D| · B(k|n, p) = |D|
�

n

l

�
pl(1− p)n−l ,

yielding an upper bound on the expected number of residual strings:

|D|
n∑

l=1

�
n

l

�
pl(1− p)n−l

d∑
k=0

�
l

k

�

2.7.2. Query Time

e query can be divided into two separate phases: e filtration phase and the verification
phase. In the filtration phase, we prune the search space by generating a set of candidates
that contains every valid match and additionally some invalid matches. Suppose that our
index has been generated for up to d deletions. For a query q of length m we have to generate∑d

k=0

�m
k

�
= O (md) residual strings in O (d2md+2 log m) time, and we have to compute the

hash value for each of them, which takes O (m) time per residual string. We also need to
mark every original string as a candidate. If there are cnd such candidates, the filtration
phase needs O (d2md+2 log m+ cnd) time.

We have to check the actual edit distance of each candidate to the query string. If we use
the classic dynamic programming approach, this takes O (m2cnd) time, but since we are only
interested in the exact edit distance if it is not greater than d, it suffices to compute a diagonal
strip of width 2d+1 in the matrix, yielding a time bound of O (md · cnd) for the verification
phase.

Summing all up, a query can be performed in time O (d2md+2 log m+ cnd +md · cnd) =
O (d2md+2 log m+md · cnd).

2.8. Experiments
We conducted experiments to see how the query times and the memory consumption are
affected by the size of the dictionary as well as by the various parameters. All experiments
were performed on an Intel Core i7 920@2.67GHz with 12GB RAM on Linux 2.6.27. e
programs were implemented in C++ using GCC 4.3.2.

e parameters are

• the number of slots: e size of the table first_edge. We hash the residual strings
into this table. If we choose it too small, the number of hash collisions grows.
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Figure 9: e distribution of word lengths for natural language dictionaries sometimes re-
sembles a binomial distribution.
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• the split parameter: e threshold at which we decide to split a word into halves, as
described in section 2.4 on page 15.
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Figure 10: e query time degrades if we assign too few slots to first_edge.

Figure 10 shows how the size of the array first_edge affects the query time. e dictio-
nary used was the list of distinct words in the novel “Moby Dick” by HM [27],
as available on Project Gutenberg [15]. It contains 17149 distinct words and the index was
constructed to support the correction of up to 3 errors. As can be seen from the plot, the total
number of distinct residual strings for this dictionary is about 1.1M. If we choose the size of
the array smaller than this value, hash collisions are inevitable. It is interesting to note the
symmetry between the number of slots that are occupied and the number of candidates that
have to be verified.

For Figure 12 on page 29 we choose the size of first_edge big enough, such that there
are only very few hash collisions. e plot shows how the size of the dictionary affects the
query time and the time that is needed to construct the index. As can be seen, the query
time increases as the size of the dictionary increases. is is due to the fact that the average
number of candidates that have to be verified grows as well.

Figure 11 on the following page shows the effect of the split parameter. e smaller we
choose the split parameter, the fewer residual strings are generated. Unfortunately, the split
words match too many candidates if we choose the split parameter too small.

Surprisingly there seems to be a “sweet spot”where splitting even improves the query time.
e reason for this becomes clear in Figure 13 on page 29: e smaller we choose the split
parameter, the fewer time is spent generating the residual strings. e verification phase, on
the other hand, takes significantly longer. For the dictionary in question (d = 3), the optimal
split parameter is 10.
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Figure 11: If we choose a sensible value for the split parameter, we can reduce the number of
residual strings and even accelerate the query.

2.8.1. Implementation Note

Figure 13 on the facing page also shows where there is room for further improvement. Im-
proving the verification phase should be straightforward, as the dynamic programming ap-
proach that we use for edit distance computations is not optimal. e construction of the
residual strings can probably be improved by altering the hash function: At present we gen-
erate the residual strings by successively deleting characters from the original string. is
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Figure 13: If we don't split the strings, most of the time is needed for the construction of the
residual strings.

involves copying the string every time. ereafter we call the hash function, which takes a
std::wstring and produces an unsigned int. We could avoid the copying of the strings
by altering the hash function such that it takes the original string and the positions of the
characters to be deleted, thus making it unnecessary to actually copy the string and delete
characters from it.
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3. Geocoding
A central aspect of this thesis is the application of the fault-tolerant index to the domain of
geocoding.

Our goal is to return a geographic location given a text-based address query. e informa-
tion one would like to retrieve could be references to any kind of spatial entity, like towns,
streets, parks, lakes etc. In our scenario, we only care about postal addresses, i.e. streets and
towns. Potential uses of such a service include:

• Interactive Address Search: A service where a human user formulates a textual query
that describes a location which the user wishes to have geographically referenced. e
service may return a number of results from which the user can then choose.

• Batch-Processing: A company may have a data base of erroneous postal addresses (e.g.
retrieved from scanned images by OCR) that it wants to automatically check and clean
if necessary.

• Address Validation: A service provider may require customers to enter an address to
register for their services. A geocoding service could then be used to verify that the
address does in fact exist.

For the towns, we store their names, positions and a rank. e rank will be used to sort
the towns by their importance. One could use a town's population, the number of streets
in a town or any other criteria for importance. Additionally we store a parent-child rela-
tionship between a principal town and its districts (e.g. "Berlin" is the principal town of
"Kreuzberg", while "Kreuzberg" is a district of "Berlin").

Definition 6. Let x be a town with principal town y (x and y are equal if x is a principal town
itself). e set that contains y and all of its districts is called the perimeter of x .

Streets are fully defined by their name and the town they belong to. Note that it is common
for different towns/streets to share their name: ere aremore than20"Neustadt" andover
12000 "Hauptstraße" in Germany. erefore we store with the towns only a cursor into a
table where we store the actual strings. Each string, on the other hand, gets assigned a list
of town IDs.

In the following explanations, it is important to distinguish towns and streets, which are
always associatedwith a town id and represent actual spatial entities, from candidates, which
are merely strings. We will name street candidates s, s1, . . . , town candidates t, t1, . . . , or c
in the more general case. Actual towns/streets that reference a spatial entity will be called
v, w, x etc.

e challenge is now to quickly interpret a given query and to return the intended address,
or maybe several addresses. When we talk about an address, we mean a pair of a town and a
street that is located in that town. We do not consider house numbers or postal codes.

ere are several classes of errors a user of a geocoding system could make:
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Town
id : int
position : (float,float)
rank : int
parent_id : int
string_id : int

TownStrings
id : int
town_ids : [int]
string : varchar

StreetStrings
id : int
town_ids : [int]
string : varchar

Table 2: e data model that we use. Streets are defined by their name and the town they
belong to.

• typing errors, e.g. "Hambzrg" instead of "Hamburg"

• missing information, e.g. "Frankfurt Oder" instead of "Frankfurt an der Oder"

• additional information, e.g. "Offenbach am Main" instead of "Offenbach"

• wrong assignment of streets to towns, e.g. "Mollstraße, Berlin Kreuzberg" in-
stead of "Mollstraße, Berlin Mitte".

In short, it is unlikely that a humanuserwill always be able to enter a postal address exactly
as it is stored in the data base. In the remainder we will show a method to quickly prune the
search space by combining the index which is based on edit distance with the geographic
information that we obtain from the address data.

To improve the quality of results as well as the performance of the query, we want to ex-
ploit our knowledge of the geographic location of the data. We will use that information in
different ways:

1. Already at an early stage of the algorithm, we can dropmost of the candidates if we can
make sure that they cannot be part of a result.

2. e user will have the possibility to specify his query by providing a second town in the
input, e.g. "STREET in TOWN near BIGTOWN" instead of "STREET in TOWN".

3. If a street cannot be found in the town provided by the user, we will search also in the
perimeter, i.e. other towns that belong to the same principal town.

How this is achieved will be explained in the remainder of this section.
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3.1. Dropping incompatible candidates
Each street in our data is associated to a town. We call the set of towns T , the set of streets
S , and the sets of candidate strings CS and CT respectively. If a street runs through more
than one town, e.g. if it connects two towns, we treat it as two distinct streets. Consider a
query “S in T”, where S shall be a street and T a town. If we query the town and street index,
each will return a set of candidates cand(S) ⊂ CS and cand(T ) ⊂ CT . Keep in mind that a
candidate at this point holds no geographic information; it is only a string that represents
the name of possibly hundreds or thousands of towns or streets.

If c is a candidate, let towns(c)⊂ T be the town IDs that correspond to the candidate. We
are looking for pairs (t, s) ∈ CT × CS such that s represents a street that actually exists in a
town with name t . Obviously a candidate s ∈ cand(S) can only occur in such a pair if there
is a town candidate t ∈ cand(T ) such that towns(s)∩ towns(t) ̸= ;. In this case we say that
s and t are compatible.

Definition 7. We call a street (town) candidate c compatible to a set of town (street) candidates
C if

towns(c)∩
 ∪

c′∈C
towns(c′)

!
̸= ;

Typically, we can reduce the size of the candidate sets significantly by dismissing incom-
patible candidates. See Fig. 15 on the next page for an illustration and Fig. 14 on the facing
page for an example.

For a set of Towns T ′ ⊂ T and a set C of candidates, finding the subset of compatible
candidates is simple: If for a candidate c ∈ C the intersection towns(c)∩T ′ is not empty, we
can keep the candidate , otherwise we remove it from the set of candidates.

In the geocoding algorithm, dropping incompatible candidates at an early stage is crucial
to the performance of the query. On a very high level, the algorithm works as follows:

1. Retrieve a set of candidates from the fault-tolerant index.

2. Compute a rating for each candidate.

3. Choose the candidates with the best rating and return them.

e running time of the query is dominated by the second step, i.e. by the rating of the
candidates, because it involves a lot of edit distance computations. e easiest way to speed
up those computations is probably to avoid them as much as possible, therefore we try to
dismiss candidates as soon aswe know that they cannot possibly be part of a successful result.
It is important to emphasize that we drop most of the candidates without even looking at the
strings. In fact this step can be performed very quickly, since it involves only intersections of
std::vector<unsigned int>s.
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Query:
town candidates street candidates“Longue-Straße, Sinsheim”

before intersection 129 2816
after intersection 17 11

Figure 14: An example query where the search space is reduced drastically by dismissing in-
compatible candidates.

Figure 15: e towns that correspond to the town candidates are indicated by stars, the towns
that correspond to the street candidates by circles. We are only interested in towns
that are marked by both a star and a circle.

3.2. Tie-Breaking

Sometimes it is not possible to return a unique result because there are several locations that
match the query. In such situations, one cannot guess correctly the intention of the user
without further information. For this reason it should be possible for the user to provide
additional information (e.g., “Neustadt near Coburg”) to distinguish the expected result
from other results.

To specify the query, the user will typically choose a city that is close to the original town
in a geographic sense and more important according to a certain criteria. One can think of
such a town as a landmark.

Clearly, not all towns come into consideration as a landmark. Consider the towns xsmall

and xbig . e bigger town xbig is a landmark for xsmall if
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1. it is close to xsmall in a geographic sense and

2. there is no town in between that is “more important”: We assume that the user asso-
ciates a town with the nearest town that he believes to be significant enough.

In the remainder of this section we will describe a graph that models those relationships.

3.2.1. The Neighborhood Graph

e graph that we are going to build should model the relationship between towns and their
landmarks. ismeans that for any town x there should be a path to y if the distance between
x and y is sufficiently small and if y is more important for x than any other town between
x and y . What exactly we mean by between and more important will become clear in the
following text. We will use Voronoi Diagrams and Delaunay Triangulations to construct the
graph.

A Voronoi diagram is a decomposition of a metric spaceM into a set of Voronoi cells by a
discrete set of objects, e.g. points in the space (the Voronoi sites). Each Voronoi site x defines
a cell Cx consisting of all points inM that are closer to x than to any other site. e points
that are equidistant to more than one site build the segments of the diagram. In our case,

Figure 16: A Voronoi diagram and the corresponding Delaunay Triangulation.

the metric space is the euclidian plane and the sites are the principal towns.
We obtain the dual graph of a Voronoi diagram by drawing edges between sites if and only

if they share a segment in the Voronoi diagram. e resulting Graph is a triangulation and is
called a Delaunay Triangulation. We will need the following well-known lemma about Delau-
nay Triangulations (without proof):
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Lemma 8. If a circle passing through two of the input points doesn't contain any other of them in
its interior, then the segment connecting the two points is an edge of a Delaunay triangulation of
the given points.

Let V = {v1, . . . , vn} be the set of towns, ordered by descending rank and Vi := {v1, . . . , vi}.
Let coord(vi) ∈ R2 denote the coordinate of vi. We begin with a Graph G = (V,;) and main-
tain a Voronoi diagram Vor(V ). en we successively delete the nodes from V , yielding a new
Voronoi diagram after each deletion step. In every step we delete the node with the lowest
rank of all remaining nodes. LetC i

v denote the Voronoi cell of node v in Vor(Vi) and consider
the step when node vi is to be deleted:

IfC i
x1

, . . . ,C i
xk

are the cells adjacent toC i
vi
in Vor(Vi), we add the edges (vi, x1), . . . , (vi, xk)

to G (see Fig. 17). By the order in which we delete nodes, we know that x1, . . . , xk are ranked

vi

Ci
vi

Ci
w

w

before deletion after deletion

Ci−1
wvi

w

Figure 17: On the left: A cutout of the Voronoi diagram (black) and Delaunay graph (green,
dashed) at step i. Node vi will be deleted. On the right: e situation after vi has
been deleted. vi gets assigned a neighborhood.

higher than vi , otherwise they would have been deleted before vi. We also know that vi gets
assigned an edge to its nearest neighbour x j in Vor(Vi), because their Voronoi cells are ad-
jacent: According to lemma 8, the edge {vi, x j}must be in the Delaunay triangulation of Vi,
therefore their cells must share a segment in Vor(Vi). In other words, every town will have an
edge to the nearest town that is ranked higher.

Notice that the edges we add to the neighborhood graph after deletion of vi are in the
Delaunay triangulation of Vi, because they are segments of the cell C i

vi
in Vor(Vi). In fact,

the algorithm can be implemented “backwards”: Instead of deleting nodes from the Voronoi
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diagram, we can start with an empty graph and incrementally add the nodes v1, . . . , vn, main-
taining a valid Delaunay triangulation and Voronoi Diagram in every step. e edges that we
add to the triangulation during the insertion of vi are the same edges that would be added in
the above algorithm after vi would be removed from Vor(Vi).

Lemma 9. Every town v j, j > i with coord(v j) ∈ C i
vi
has a path to vi in the neighborhood graph.

Proof. e proof will be stated in terms of Voronoi diagrams, but “backwards”, as explained
above. In this proof we will call a cell Cv blue iff there exists a path from v to vi . e other
cells are white. When a node is inserted into a blue cell or into a white cell that is adjacent to
a blue cell, its cell becomes blue. To show that there is a path from v j to vi, we have to show
that v j is inserted into or next to a blue cell.

Once a node's cell is blue, it will stay blue obviously. But this is not only true for the node,
but for any coordinate in a blue cell:

p p

w vw v

Suppose a point p lies inside of a blue cell Cv. For the point to “change” its cell, we have to
insert a node w such that p's distance to w is smaller than its distance to v. en Cw must
be adjacent toCv , thus becoming a blue cell itself. Hence, p remains in a blue cell.

Since coord(v j) lies inside of the blue cellC i
vi
, its own cellC j

v j
will be blue, too. See Fig. 18

on the facing page for a sketch.

See Algorithm 4 for the pseudo-code.

Corollary 10. If for two towns vi and v j , i < j there is no directed path from v j to vi , there must
be a higher ranked town vl , l < i that is closer to v j .

Proof. From the above lemma follows that coord(v j) does not lie inside C i
vi
. en it must lie

inside another Voronoi cell C i
vl

, l < i.
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Figure 18: An illustration of lemma 9 on the facing page: e above sketch represents the
state of the Voronoi diagram after the five biggest towns (the fat red points) have
been inserted. Any smaller town (the small crosses) that will be inserted after-
wards will have a path to the center of the cell where it is located (the solid lines).
Note that they may also have paths to other Voronoi sites (the dashed lines).

Definition 11. We call the set of nodes that are reachable from a node v its neighborhood ν(v).

We could already use the graph as described above to enhance the quality and performance
of the search, but there are still some issues that we need to resolve. e neigborhood is too
big and there are many redundant edges. In the neighborhood graph for Germany, the aver-
age number of neighbours is 280. Especially the highest ranked town, Berlin, is a neighbour
of every german town, which is hardly desirable. Suppose we want to dismiss superfluous
neighbours of a town v. We drop a neighbour w if there is another neighbour x that is “be-
tween” v and w and “important enough” to dominate w.

We will use light sources as an analogy. ink of a town as a point-shaped light source.
e importance of a town corresponds to the brightness of its light, which decreases as the
distance to the light source increases.

Definition 12. Let u be a town with rank ru. e brightness of u at distance l from u is

brl(u) =
ru

l2
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To decide if a town w should be dropped from the neighborhood of a town u, we “look
towards” w. If there is a light source v between u and w that outshines w, we keep only v as
a neighbour and drop w. If w is a neighbour of u, it can only be dominated by nodes that lie
inside the sector of a circle with radius dist(u, w) and angle α. See Fig. 19 for an illustration.
To check which neighbours can be dropped, we have have to compare each pair of outgoing

u

v

w

x

π

3

y

z

Figure 19: e size of the nodes indicates their brightness as it is perceived from node u. w
is dominated by v, but neiter by x (angle too big) nor by y (distance too big) nor
by z (not as bright as w). e edge (u, w) is dropped.

edges of each node. In our case the resulting graph has an average out-degree of 9.
e domination rule is simple and can be evaluated quickly, but it can lead to problems.

Look at the graph in Fig. 20 on the facing page. ere, every node vi, i ∈ 1, . . . , 6 is dominated
by node vi+1. After the domination phase, only node v7 remains, even if our intuition tells
us that some of the nodes v1, . . . , v6 could also remain in the graph. is is because we don't
check if a node v dominating another node w is dominated itself.

As we will show in our experiments in Section 3.8.5 on page 60, the described method
works well with the graph obtained from german address data. However, it has not yet been
tested on different graphs. It would be interesting to test this method also on countries
whose graphs differ structurally from the german graph, e.g. Chile: Germany is almost as
wide as it is long, and important towns are distributed across the whole country, whereas
Chile is very long and narrow, and the capital Santiago is by far the most important city. It
is possible that our algorithm behaves very differently on other countries, but as mentioned,
this is object to further study.

3.3. Searching in the Neighborhood Graph
We want to search for a pair of towns (t1, t2), where t2 is a bigger town than t1 and they are
near each other in a geographical sense, i.e. t2 is a landmark of t1. A possible query could be
“Eberbach near: Sinsheim”.
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u

v1

v2

v3

v4

v5

v6

v7

α < π/6

u

v7

Figure 20: A graph instance where only one neighbour will survive the domination phase.

Sinsheim is a landmark for Eberbach if there is an edge (Eberbach,Sinsheim) in the
neighborhood graph. We find such an edge as follows: First, we query the index for sets of
candidates cand(Eberbach) and cand(Sinsheim) and find the corresponding towns T1 :=
towns(cand(Eberbach)) and T2 := towns(cand(Sinsheim)).

A pair (x , y) ∈ T1× T2 is a possible result if y is a neighbour of x , i.e. if y ∈ ν(x). To find
possible results, we use the following algorithm:

1. Mark all towns in T2.

2. For each x ∈ T1, look at all neighbours y ∈ ν(x). If y is marked, (x , y) is a possible
result.

e above example is visualized in Figure 21 on the following page.

3.4. Finding a Postal Address
In the remainder of this section we will describe how we utilize the neigborhood graph and
the parent-child relation to construct a fault-tolerant address index. In the following we will
use the term “error” a bit loosely. When we speak of an “error in the candidate x”, we mean
that it differs from the query — of course the candidates all refer to reference data, in this
respect they don't actually contain errors.

e address search consists of up to five phases, the first of which is responsible for the
preparation of the query string and further initialization. During the remaining four phases,
the actual search is performed.

Initialization. e query string is split into tokens and normalized, i.e. transformed to
lower-case, german umlauts are substituted according to the official rules (ü to ue, ß to ss…)
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Frankfurt 
am Main

Buchen

Mosbach

Sinsheim

Michelstadt

Mannheim
Heidelberg

Eberbach

Figure 21: A neighborhood search for (t1, t2) = (Eberbach, Sinsheim): Sinsheimmatches
t2 and is therefore marked. It is then found again as a neighbour of Eberbach,
which matches t1. Note that Mannheim isn't a neighbour of Eberbach — it is
dominated by Heidelberg. Frankfurt am Main, on the other hand, is a neigh-
bour despite the greater distance, because there is no other important town in
between.

etc. e candidate sets for the street and the town are computed, or, if the keyword near: is
provided, for the street and two towns. Incompatible candidates are dropped.

e initialization stage is obligatory, whereas the several search phases are performed only
if the preceding phases did not succeed to find a good-enough match.

Neighborhood Graph Search. e user may supply two towns instead of one, separated
by the keyword near:. e query “Offnbach near: Frankfrt” is then interpreted as
“find a town that resembles the query 'Offnbach' and has a neighbour that resembles the
query 'Frankfrt'”. is means that we look for a pair of towns that is connected by an edge
in the neighborhood graph. e number of pairs that have to be considered is usually small.
en we proceed to search the street inside the matching town candidates. Note that the
street search, in this phase as well as in all following phases, is always fuzzy.
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Usually a user of a geocoding service will want to type as little as possible. erefore most
people will probably not use this feature. However, the neighborhood graph could be very
useful in an interactive setup, where the user can choose the correct town in a list of possible
matches. After a user has typed enough letters to identify the town (e.g. “Musterstadt”),
we could follow the edges in the neighborhood graph to show possible matches to choose
from (e.g. “Musterstadt near Stuttgart”, “Musterstadt near Bremen”, …), without
the need to actually enter the remaining parts. Existing online geocoding services, such as
Google Maps [26], already provide this feature.

Exact Town Search. In this phase we demand that one of the query tokens appear with-
out errors in a candidate. I.e., the query “Frankfrt, Main”will match Frankfurt am Main
because “Main” appears without errors in the candidate. e candidate Frankfurt, however
will not be matched. We call such a match partially exact. We then try to identify the street
inside the partially exact town matches.

Perimeter Search. If we successfully identified partially exact matches during the first
phase, but could not match a street in these towns with a sufficient score, we look for the
street in nearby districts (the perimeter, see Definition 6 on page 30). Recall that in our data
each town is either a principal town or a district. If a candidate x is a principal town, we
search for the street also in all districts of x . If a candidate x is a district of the principal
town y , we search for the street also in y as well as in all of its districts:

x y

x

case 1: case 2:

matched town

“perimeter”

If the town provided by the user is matched against a candidate x which is subsequently
corrected to a town y in the same perimeter, we still calculate the rating for x .

Fuzzy Search. If we still haven't found a good enoughmatch, we further relax the require-
ments for the town candidates. Now we also allow errors to occur in every token of a town
candidate, but we don't do a full perimeter search. If the matched candidate is a district, we
still search inside the principle town, but not inside any of the other districts.

e intention behind this separation is that we think of erroneous input as an exception.
ere may be errors, and then we want to correct them, but it is also possible that the user
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enters the query correctly, and then there is no need to jump through all those hoops. After
each phase we will evaluate the candidates and calculate a score for each of them. We only
advance to the next phase if the results that have been found so far are not yet satisfying. e
first phase can be omitted if the user does not provide the keyword “near:” and the fuzzy
search will usually only be performed if there are no partially exact matches.

3.5. Pseudocode & Analysis
In this sectionwe give the complete algorithm in pseudo-code and an analysis of the run time.
e pseudo-code for the subroutine TC is omitted because it is straightfor-
ward and of little interest in this context. e subroutine I that is used to construct the
Delaunay triangulation is based on theQuadEdge data structure introduced in [13]. e C++
implementation is adapted from [24]. e routines work on nodes, which are simple objects
consisting of a coordinate, a rank, and a neighborhood.

e function NG (Alg. 4 on the facing page) takes as input a set of
nodes T := {t1, . . . , tn}, ordered by ascending rank. It constructs the Delaunay Triangula-
tion of T and the corresponding neighborhood graph at the same time. Finally, the edges to
dominated town nodes get deleted from the neighborhood graph.

e predicate D (Alg. 5 on the next page) takes three nodes u, v, w and an angle
α and returns true if and only if w is dominated by v (see Figure 19 on page 38).

3.5.1. Analysis

We can divide Alg. 4 on the next page into three parts:

1. A single insertion step can take O (n) time, but in practice the average number of edges
to be flipped to restore the Delaunay properties is small (< 9). Guibas, Knuth, and
Sharir have shown that if the insertion order is randomized, the expected time is O (1)
per insertion [12]. In our case, the insertion order depends on the distribution of the
towns, therefore we can't apply this bound, unfortunately.

e location of the triangle where the next node is to be inserted can be done optimally
in O (log n) time, but we opt for a simpler approach: We randomly select a triangle and
move into the direction of the node until the correct triangle is reached. If the nodes
are uniformly distributed, the expected time to find the correct triangle is O (pn) [24].

If we assume that the towns are uniformly distributed and the insertion order is ran-
domized, thenwe construct theDelaunay triangulation in an expected time ofO (n3/2).
e preliminary neighborhood graph is computed during the construction of the De-
launay triangulation, needing only constant time in each iteration.

2. e Transitive closure can be computed by doing a breadth first search from every node
in the graph that is obtained in the first phase. is takes O (nm) time, where m is
the number of edges in the preliminary neighborhood graph. In each step, the edges
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Algorithm 4: NeighborhoodGraph
Input : A set of nodes T := {t1, . . . , tn}
Output: A neighborhood graph N(T )

/* The neighborhood graph: */
1 VN ← T
2 EN ← ;
3 N ← (VN , EN)

/* The Delaunay Graph: */
4 VD← {p0, p1, p2} /* the encompassing triangle */
5 ED← {(p0, p1), (p1, p2), (p2, p3)}
/* Construct the delaunay graph and the */
/* preliminary neighborhood graph at the same time. */

6 for i← 1 to n do
7 D← Insert(t i, D)
8 M ← neighborhood(t i, D) /* t i's neighborhood in D */
9 EN ← EN ∪ {t i} × (M \ {p0, p1, p2})

10 EN ← TransitiveClosure(EN)

/* Find dominated nodes and drop them. */
11 for i← 1 to n do
12 M ← neighborhood(t i, N) /* t i's neighborhood in N */
13 foreach u ∈ M do
14 foreach v ∈ M \ {u} do
15 if Dominates(t i, u, v) then
16 neighborhood(t i, N)← M \ {v}

17 return N

Algorithm 5: Dominates
Input : ree points u, v, w and an angle α
Output: true iff v is located inside the sector of a circle with radius dist(u, w) and

angle α and if it appears brighter than w when viewed from u.
1 if dist(u, v)> dist(u, w) then
2 return false

3 bv ← Brightness(u, v)
4 bw ← Brightness(u, w)
5 return bv > bw and ∠(u⃗v, u⃗w)≤ α/2
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Algorithm 6: Brightness
Input : A node v and a distance l
Output: e brightness that is perceived at distance l from v

1 return rank(v)/l2

inserted into the neighborhood graph are edges that are inserted into the current De-
launay triangulation. Since the total number of edges that are inserted during the con-
struction of the triangulation is O (n), the preliminary neighborhood graph also has
m= O (n) edges and the transitive Closure can be computed in O (n2) time.

3. To check for a node u which neighbours can be dropped, we have to check each pair of
neighbours of u. e check Dominates(u,v,w) runs in constant time. In the worst
case, t i has degree i− 1, i.e. every node has an edge to every more important node. In
that case, this phase takes O (n3) time.

Summing all up, we can see that the neighborhood graph can be built in O (n3) time, but
the actual performance is better than this bound suggests: Before the domination phase the
average degree in the graph is 283, as opposed to the theoretical worst case of all 12376 nodes
(the principal towns) that are present in the graph.

In our experiments it takes under 7 minutes to build the graph, and actually most of the
time is needed to write the graph to a file. e graph for Germany takes up 2.6 MB.

3.6. Searching in a Single Search Field
e Address search supports lookup of towns as well as postal addresses, i.e. streets paired
with towns. From the programmer's point of view, the easiest way to accept such a query is
to have it typed into designated text fields, i.e. a “Street:” and a “Town:” field.

From the user's points of view, however, it ismore convenient to enter a query into a single
text field, with street and town in arbitrary order, delimited by whitespace or a comma. is
poses the additional problem of parsing the search string into an adequate format that we
can further process. Specifically we would like to knowwhich parts of the search string make
up the town and which parts can be interpreted as a street name. It is also possible that the
search string describes only a town and does not contain a street name, but we don't support
searches for streets without an associated town.

It is sensible to assume that the substrings that make up the town as well as the street are
contiguous, i.e. the town string does not contain tokens that belong to the street and vice
versa.

A simple method to split a search string into a town string and a street string is simply
to split at all possible positions and to repeatedly query the index. We call this an exhaus-
tive search. For example, the query “Alte Bahnhofstraße München” can be split into
(“Alte Bahnhofstraße München”, “”), (“Alte”, “Bahnhofstraße München”), (“Alte
Bahnhofstraße”, “München”), and (“”, “Alte Bahnhofstraße München”). We don't need
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Street:

Town:

Stumpfstraße

Karlsruhe

Address: Stumpfstraße Karlsruhe

Figure 22: A single search field is more convenient for the user.

to treat the case where the town string is empty. If (s1, s2) is a pair of nonempty substrings,
we have to perform two lookups, one where s1 is the town and another where s2 is the town.
For a search string that consists of m tokens, wewould have to perform 2(m−1)+1= 2m−1
lookups. We can then return the overall best result.

While this method will always find the best possible way to treat the search string, it takes
much longer than before. We therefore propose another approach, that has to perform only
two lookups. Since there are much less towns than streets and the town names typically con-
sist of only one token, a town lookup is quite fast. Wenowperforma town lookup for the com-
plete search string, although possibly the town makes up only a small fraction of the string.
We alter the rating heuristic such that unmatched tokens in the query are not punished. Dur-
ing the computation of the rating we already determined which of the tokens in the search
string could bematched to a candidate. Consequently we can treat thematched tokens as the
town string and the unmatched tokens as the street string. en we start another, complete
address query with these strings. In most cases we should find addresses with the second,

Am Kosttor München
town search

Am Kosttor   München{{

The tokens that 
could not be matched

make up the street string.

The matched tokens
make up the town string.

faster approach. But there are cases where it does not work as expected. Consider the street
Durlacher Tor in the town Karlsruhe. We expect the query “Karlsruhe Durlacher
Tor” to be identified as “Town: Karlsruhe; Street: Durlacher Tor”. But unfortu-
nately, Durlach is a subdistrict of Karlsruhe, hence the query will be identified as “Town:
Karlsruhe Durlacher; Street: Tor” and will not return the expected result. Since this
is a special case, it's not that tragic if the query takes a little longer. So, if there is no result or
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only a result with a low rating, we restart the search and this time, we perform an exhaustive
search.

3.7. Rating Address Candidates
After we have dismissed most of the search space, we are left with a hopefully small set of
candidates. We still have to decide which of those candidates is the best match for the user's
query. Often there will be several candidates that compete for the top position. Depending
on our application, it may be feasible to return a list of candidates and let the user choose the
match which suits him best. is is the case in an interactive setup where a user can directly
verify if the returned result is indeed valid. But one can also imagine situations where it
is unacceptible to have more than one result of the same quality. For instance, a company
could have a data base of addresses in a non-canonical format and would like to correct them
automatically using a form of batch-processing. e rating heuristic that we discuss here is
best suited for the interactive setup.

To develop a rating heuristic, let us recall the different kinds of errors that we will en-
counter:

• Typing errors

• Missing or redundant tokens

• Incorrect pairing of a street and a town, i.e. a street that exists, but not in the provided
town.

e first step on the way to a robust rating heuristic is to align the query to a candidate,
i.e. find an optimal mapping from the tokens in the query to the tokens in the candidate.

3.7.1. Matching the Query to a Candidate

e typical query consists of a string street and a string town and will lead to a set of candi-
dates for both street and town. Both the query string and the candidate string may consist
of several tokens, i.e. substrings delimited by whitespace, hyphens etc. Any token in one of
the strings may occur somewhere in the other string, with or without errors.

Consider the query "Rotenburg (Tauber), Stainbach" and the candidate "Steinach
bei Rothenburg ob der Tauber". For the human observer it is trivial to find an optimal
matching: "Rotenburg" with "Rothenburg", "Tauber" with "Tauber", and "Stainbach"
with "Steinach". e short tokens "ob" and "der" don't occur in the query string.

What humansdo in this case, probablywithout noticing it, is solving awell-knownproblem
from graph theory, albeit on a very small graph. Informally speaking, we compare each token
from one string with each token from the other string and decide which of them look most
similar to each other. In graph terminology, we construct a MW B
M, where "minimum weighted" corresponds to "most similar" in the last sentence.
e problem is also known as the A P.
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Definition 13. Given two sets A (agents) and T (tasks) and a weight function c : A× T → R,
find a bijection f : A→ T , such that the cost function∑

a∈A

c(a, f (a))

is minimized.

If there are more agents than tasks, we create "dummy tasks". If t is a dummy task, we set
c(a, t) = 0 for each agent a. is will not change the optimal assignment. e case where
there are more tasks than agents can be handled similarly.

In our case, let Q = {q1, . . . , ql} be the query's tokens and C = {c1, . . . , cl} the candidate's
tokens. en we set

A :=Q

T := C

and

c(q, c) :=

(
0, if either q or c is a dummy

ed(q, c), else

ere are several algorithms which efficiently solve the assignment problem, such as the
H A [22] or algorithms based on linear programming, amongst others.
e instances that we consider in our application are rather small, the average number of
tokens in a query or candidate does not exceed 4.

Based on the matching, we calculate a rating for each candidate. Suppose the underlying
index has been computed for up to d errors. e rating should take into account the following
considerations:

• Each token that matches with at most d errors should be awarded some points.

• Tokens that could not be matched with at most d errors should not be awarded points
and may even be punished.

• e user is more likely to omit information (either because they forget it or because
they deem it unnecessary) than to over-specify the query. erefore, tokens in the
query that don't match anything in the candidate should be punished higher than can-
didate tokens that don't match anything in the query.

• e rating should be a real number in the interval [0,1], thusmaking it easy to compare
different candidates.

• e heuristic should be able to distinguish between tokens that are "important" and
tokens that do not provide much information.
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rotenburg stainbach

rothenburgbei ob taubersteinach

1 2

der

tauber
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Figure 23: An optimal assignment of the query "Rotenburg (Tauber), Stainbach" to the
candidate "Steinach bei Rothenburg ob der Tauber". Dummy nodes are
omitted.

3.7.2. The Rating Heuristic

We will now define the rating heuristic that we will use to choose the best match among the
candidates. Our index supports the correction of errors up to a constant d, independent on
the length of the consideredword. We alsowant to take into account the lenghts of compared
words, since the rate of error that can be introduced into a word with a constant number of
changes depends on its length.

Definition 14. e token similarity between two tokens q and c is

sim(q, c) := 1− err(q, c),

where

err(q, c) :=

(
ed(q,c)
|c| , if ed(q, c)≤d

1, else

e candidates are entries that are actually present in our data base, while the query may
contain errors. erefore we treat c as the "reference token" and normalize the error rate by
the length of c.
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q := "Stainbach", c := "Steinach"

sim(q, c) = 1− ed(q, c)
|c| = 1− 2

8
= 3/4

Example 3: e tokens "Stainbach" and "Steinach" are quite similar.

Let us now discuss what we mean by "important" tokens. In textual descriptions of an en-
tity, it is usually only a subset of the tokens that refers directly to the described entity, while
other parts of the description are made up of articles, prepositions etc. E.g. the description
"Neustadt an der Weinstraße" refers to a town in Germany that could be unambiguously
described by the tokens "Neustadt" and "Weinstraße", whereas "an der" would not suf-
fice. It is striking that prepositions etc. are usually very short words in most languages, but
we cannot simply link the importance of a word to its length, as there are lots of exceptions
to that observation. However, a possible reason why these words are so short may be that
they are used so frequently, therefore it seems a sensible assumption to base a token's im-
portance on its frequency within the data. is concept has been used successfully in the
domain of information retrieval under the term inverse document freqency (IDF) [3, 5]. We
use the formula

IDF(t) := log
|T |

freq(t)

to denote the IDF of a token t in relation to the set T of tokens in a dictionary, where freq(t)
is the number of occurrences of t in that dictionary. Note that we will compute the IDF only
on candidate tokens, hence freq(t) will always be greater 0.

|T |= 120000, freq("Rothenburg") = 4, freq("der") = 293,

IDF("Rothenburg") = log
120000

4
= 10.31

IDF("der") = log
120000

293
= 3.71

Example 4: e token "der" occurs much more frequently in our town data base than the
token "Rothenburg". ereforewe interpret "Rothenburg" asmore important.
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Given a queryQ, wewould like to determine the importance of each token q ∈Q in relation
to the rest of the query. is is obviously only possible if q occurs also in T , or if it can be
matched against a token that is present in T . To this end, let

M≤d := {(q, c) ∈Q× C | q matches c with at most d errors}
be the set of pairs that could be matched given a query Q and a candidate C , and let

MQ
>d := {q ∈Q | q does not match anything with at most d errors}

be the set of query tokens that could not be matched to anything in the candidate with less
than d modifications. Likewise, we define M C

>d to be the set of candidate tokens that could
not be matched to the query.

For our rating heuristic we want to compute the importance of the matched query tokens
in relation to the tokens that could not be matched. We define the weight of a token q as

wQ
C (q) :=

(
IDF(c), if (q, c) ∈ M≤d

IDFavg, if q ∈ MQ
>d ,

where IDFavg denotes the average weight of all tokens in T .
e rating for the query Q and a candidate C is then given by

ratingQ(Q, C) :=

 ∑
(q,c)∈M≤d

(sim(q, c))αwQ
C (q)

/
 ∑
(q,c)∈M≤d

wQ
C (q) +

∑
q∈MQ

>d

wQ
C (q)


e parameter α is used to adjust how strongly errors are punished. In our experiments we
set α := 2. Notice that the rating is not influenced by the tokens in M C

>d : For the query
"Frankfurt" we also want a very good rating for the candidates "Frankfurt am Main"
and "Frankfurt an der Oder". On the other hand, if the query is "Frankfurt an der
Oder", we want the candidate "Frankfurt an der Oder" to receive a better rating than
the candidate "Frankfurt". If we use this rating heuristic to sort candidates by their quality
in relation to a candidate, the missed tokens in the candidate are not taken into account at
all, in other words the order of "Frankfurt", "Frankfurt an der Oder" and "Frankfurt
am Main" is undefined. erefore we define a second rating

ratingC(Q, C) :=

 ∑
(q,c)∈M≤d

IDF(c)

/ ∑
c∈C

IDF(c)

!
,

where we divide the weight of the matched tokens by the total weight of the candidate. e
complete rating is then given by

rating(Q, C) := γ · ratingQ(Q, C) + (1− γ) · ratingC(Q, C)
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Usually we want to give more weight to the matched parts of a query, therefore we choose
γ > 1/2. In our experiments we chose γ := 3/4. e rating lies always between 0 and 1. We
can use this heuristic to sort the candidates according to their quality, and return only the
best rated candidates.

"Frankfrut/Mein Innenst."↔ "Frankfurt am Main"

Q := {"frankfrut", "mein", "innenst"}, C := {"frankfurt", "am", "main"}
frankfrut mein innenst

frankfurt mainam

2 1

Token Frequency IDF
frankfurt 3 10.31
am 507 5.18
main 34 7.89
avg 1.19 11.24

ratingQ(Q, C) = ((7/9)2 · 10.31+ (3/4)2 · 7.89)/(10.31+ 7.89+ 11.24)

= 10.68/29.44= 0.36

ratingC(Q, C) = (10.31+ 7.89)/(10.31+ 7.89+ 5.18)

= 0.78

⇒ rating(Q, C) = 3/4 · 0.36+ 1/4 · 0.78= 0.47

Example 5: e tokens "bei", "ob" and "der" are not as important as the other tokens.

3.7.3. Ignoring Light Candidates

Whatever trick we use to speed-up the query, the slowest queries are always those where
there are lots of candidates to be rated and verified. Consider the example query "Alte
Waibstadter Straße". Recall that the index will return as a candidate any entry that
matches any of these words. "Waibstadter" will match only a handful of candidates, but
the frequent tokens "alte" and "straße" will completely blow up the candidate set.

Since we weight the tokens with IDF weights, the frequent occurence of those two tokens
alsomeans that their importance is insignificant in comparison to themore descriptive token
"waibstadter".

To solve this problem, we decide not to insert those unimportant tokens into the index.
Consider the example fromabove, "Alte Waibstadter Straße". e relativeweights of the
tokens are 0.31, 0.6 and 0.09, respectively. If we decide that the query must contain tokens
that make up a fraction µ of the total weight, then we can ignore the lightest k tokens, if the
sum of their weights is not greater thanµ. E.g., forµ > 0.4, we can ignore the tokens "Alte"
and "Straße". In a query, there must be a token that matches against "Waibstadter",
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otherwise we don't return "Alte Waibstadter Straße" as a candidate, and this is also
the desired behaviour. Indeed, we need this modification if we apply the rating heuristic
as explained above. e heuristic places emphasis on the matched query tokens, therefore
a query consisting solely of the token "straße" would receive a rating of at least γ when
matched against "Alte Waibstadter Straße". Ignoring the light tokens avoids this, and
we don't need to alter the rating heuristic.

Note that it depends on the candidate in question if we ignore a token or not. In the
candidate "Alte Waibstadter Straße", the tokens "alte" and "straße" are negligible,
but in the candidate "Alte Straße" the token "alte" is much more important than the
token "straße", therefore we keep it.

e described modification has a great impact on the performance of some queries, espe-
cially those that were previously very slow. e reason is simply that we don't have to rate
that many irrelevant candidates.

3.8. Experiments
In this section we will evaluate experiments we conducted on the address index to measure
query times, the match rate, memory requirements etc. ere are some parameters that
affect the behaviour of the index and we will try to give sensible default values that lead to
good query times without blowing up the index memory-wise.

e data that was used to build the index comprises the german street and town names. In
total there are about 80500 distinct town names and 444000 distinct street names. A street
name consists of 2.5 tokens on average, while town names consist of 1.1 tokens on average.

e queries are either randomly generated, or are logged data from users of an existing
geocoder. Experiments were performed on an Intel Core i7 920@2.67GHz with 12GB RAM
on Linux 2.6.27. e programs were implemented in C++ and compiled with GCC 4.3.2.

3.8.1. Random Queries

For the random queries, it would be easiest to insert, delete or substitute random charac-
ters in a query. e errors that are introduced this way, however, are unlikely to resemble
the errors that a human would make while entering a query through a keyboard. We try to
introduce more “realistic errors” that can roughly be divided into three classes:

Typing Errors. Typing errors are very common and we distinguish

• swapped characters

Example: “Frankfurt”→ “Frankfrut”

• missing characters

Example: “Frankfurt”→ “Franfurt”
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• superfluous or wrong characters, mostly closely located to the correct character on the
keyboard (here in terms of the QWERTZ-layout).

Example: “Frankfurt”→ “Frankdfurt” or “Frankdurt”

Phonetic Errors. Depending on the respective language there are several sources of error:

• doubled characters where there should be a single character

Example: “Bensheim”→ “Bennsheim”

• single character where there should be two of the same

Example: “Mannheim”→ “Manheim”

• e S algorithm identifies classes of characters such that different characters
from the same class differ only slightly in their pronunciation.

Example: f≡ v, “Vechta”→ “Fechta”

• Two consecutive vowels that occur in the same syllable are called a diphthong. In the
german language, several different diphthongs sound the same or similar:

– ei≡ ey≡ ay≡ ai

– eu≡ äu≡ oy≡ oi

– …

Example: Hoyerswerda→ Heuerswerda

We use a function distort that takes a string s and an integer n and randomly introduces n
phonetic/typing errors into s.

distort(Waldstrasse, Mainz, 2)

→ distort(Wasldstrasse, Mainz, 1)

→ distort(Wasldstrasse, Meinz, 0)

→ Wasldstrasse, Meinz

Example 6: e function distort randomly introduces errors into a string.

For our experiments, we use a set of existing, relevant addresses R, and a set of non-
existing, irrelevant addresses I , which are composed of randomly chosen town and street
names. Ideally, we would like to return correct results for relevant address queries and no re-
sult for irrelevant address queries. Light candidates were ignored during the indexing phase,
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as described in Section 3.7.3 on page 51: e rating heuristic has been developed with that
modification in mind and does not work well without it. Hence, we don't report match rates
for the index that is obtained without it.

For the tests, we performed searches with 1000 relevant and 100 irrelevant addresses. We
classify the results returned by the index as follows:

• True Positive (TP): A relevant address that is correctly identified.

• True Negative (TN): An irrelevant address that does not return a result or a correct
partial result (i.e. the correct town).

• False Positive (FP): An irrelevant address where the index does return a result.

• False Negative (FN): A relevant address where we don't find a result.

• Incorrectly Identified (II):A relevant address that returns an incorrect result, i.e. another
relevant address.

e match rates, along with the query times, are depicted in Table 3 on the next page. All
tests were performed for both the single-field search and the multi-field search. In the case
of the single-field search, we resorted to the exhaustive search, as described in section 3.6
on page 44 (this decision will be explained in Section 3.8.4 on page 59). First of all, note
that the query times decrease as we increase the error rate. e reason for that is simple: e
higher the number of errors, the lower the number of candidates that have to be verified. e
number of true positives is practically the same for both themulti-field search and the single-
field search and drops significantly at 5 errors. At that point, three errors are introduced into
the street name and the edit distance becomes too big. While the single-field search doesn't
produce too many false positives, the multi-field search is maybe too aggressive in its effort
to interpret the query and returns up to 48 false positives for 100 irrelevant address queries.
e relevant queries that can not be successfully recovered aremostly false negatives (i.e. not
found at all), but sometimes a false result is returned.

3.8.2. Real Queries

To get an impression of the quality of the results, we also did experiments with real-world
input, i.e. actual queries that have been provided by users of an existing geocoder that is in
use at PTV. We will call that geocoder PTV-GEO.e test data consisted of 1383 queries that
were given to PTV-GEO as well as the output that it returned. PTV-GEO accepts input of
a street and a town in separate fields and supports lookups of street/town pairs and towns
without an associated street. It classifies the queries according to the quality of the achieved
results into five classes:
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relevant irrelevant
Errors TP FN II TN FP Time (ms)

0 1000 0 0 93 7 3.02
1 989 10 1 95 5 2.75
2 988 11 1 94 6 2.44
3 928 66 6 94 6 2.40
4 854 140 6 99 1 1.79
5 557 431 12 97 3 1.59

(a) multiple fields

relevant irrelevant
Errors TP FN II TN FP Time (ms)

0 1000 0 0 52 48 26.07
1 989 10 1 63 37 23.33
2 986 13 1 74 26 19.72
3 927 66 7 75 25 18.44
4 856 125 19 80 20 16.69
5 560 414 26 86 14 14.31

(b) single field

Table 3: Matching rates and query times for distorted addresses. e test queries comprise
1000 relevant and 100 irrelevant addresses. Hence we get T P + FN + I I = 1000
and F P + T N = 100 in each row.

Exact. Queries where each token can be matched without errors to a token in the result.
e only differences allowed between query and result are those that are handled during a
normalization phase (e.g. “str.”≡ “straße” or “ö”≡ “oe”).

Example: “Groebenzell; Parkstr.”→ “Gröbenzell; Parkstraße”

Partially Exact. Queries where each token occurs in the result, but not each token of the
result string occurs in the query.

Example: “Bergisch Gladbach; Kaule”→ “Bergisch Gladbach; Auf der Kaule”

High/Medium/Low. Queries that contain errors. PTV-GEO assigns the labels “High”,
“Medium”, and “Low”, depending on how confident it is that the result is a correct interpre-
tation of the input.

Example: “Fielderstedt; kleiststr.”→“Bonlanden, Filderstadt; Kleiststraße”
(classified as “Medium”)
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We tested our address search with those queries. Unfortunately we didn't have correct
reference results, hence it was not generally possible to check automatically if our results
were correct, and it had to be done by hand. We classified the results into three categories:

Strong Match. A result that is unquestionably correct. In many cases the query was non-
ambiguous and easy to verify.

Example: “erfurt; rwichartstraße”→ “Erfurt; Reichartstraße”

Weak Match. A result that is not correct, but has successfully identifiedparts of the query,
e.g. the town.

Example: “Nurnberg; Hinterer Floßanger”→ “Nürnberg”

No Match. Either a result that is definitely incorrect, or no result at all.

Example: “bad orp”→ “Diemelstadt Orpethal”

In total the test data consisted of 1383 queries, classified into 844 Exact, 357 Partially
Exact, 125 High, 41 Medium, and 16 Low queries. Since they had to be verified by hand, we
picked random samples of at most 100 queries per class and removed those that were not
present in the data (e.g. searches for shopping centers, water parks etc. — our index does
not contain points of interest). ere remained 100 exact and 99 partially exact queries, as
well as 81, 34 and 15 queries classified as high, medium and low. e results are shown in
Table 4. e match rates for exact or partially exact queries are unsurprisingly very high for

PTV-GEO O G
Class # Queries strong weak nothing strong weak nothing
Exact 100 100 0 0 100 0 0
Partial 99 99 0 0 99 0 0
High 81 78 2 1 77 2 2
Medium 34 17 14 3 27 6 1
Low 15 9 3 3 13 1 1

Table 4: e match rates of our geocoder on real queries compared to PTV-GEO.

both geocoders. Our geocoder gives better results for erroneous queries. For those queries
PTV-GEO tends to omit the street and return only the town (i.e. lots ofweakmatches). While
these results certainly look promising, they might be even better in practice: Unfortunately
we only had test queries where PTV-GEO successfully returned a (sometimes incomplete or
incorrect) result. Queries that could not be answered at all were not present in the logged
files that we had at our disposal.
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3.8.3. Parameters That Affect the Query Time

eparameters that affect the query time are those that define the behaviour of the underly-
ing index as described in section 2 on page 8: e size of the table where we store the hashed
residual strings and the split parameter. Fig. 24 shows the effect of the split parameter on
the town index. As expected, the split parameter provides a trade-off between query-time
and memory usage. Splitting above length 9 reduces the size of the index file by factor 2,
while the query time goes up by factor 3.
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Figure 24: e average query time under different values for the split parameter. Here, the
street index did not use the split parameter, while the values for the town index
are shown as the x-axis.

As observed in the last section, the query times decrease when the error rate increases.
Table 5 on the next page shows the average lookup time for different types of queries along
with the number of candidates that have to be verified. To see why the number of candi-
dates drops as we add errors to a query, we want to look at an example. Consider the string
“word” in an english dictionary. If this string is input correctly, it can be transformed into
other words easily by a single operation: “word” can become “sword”, “lord”, “words”,
“worm”, “world” etc. If we introduce an error into the string and input the query “womrd”,
for example, only few strings will match the query. We effectively trim the result set by in-
troducing errors into the query, hence the query is fastest when there are errors in both town
and street.

We use several techniques tomake sure that the number of candidates stays small and that
we don't have to perform too many edit distance computations. To see if these techniques
are necessary and how each of them affects the query time, we have performed a row of
experiments. e techniques are:
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Error Query Time [ms] Town Candidates Street Candidates
none 2.70 73 660
street only 2.03 73 470
both 1.52 46 470

Table 5: e average query time for clean queries, queries where the street contains errors,
and queries where both the town and the street contain errors.

Filter Incompatible Candidates (FIC). As described in section 3.1 on page 32, we keep
only those town and street candidates that are geographically compatible.

Filter by Edit Distance (FED). enumber of town candidates is typicallymuch smaller
than the number of street candidates and it is not too expensive to filter out the candidates
that cannot be part of a successful match because of their edit distance to the query. We do
this before we search for streets in the towns that correspond to the town candidates.

Ignore Light Tokens (ILT). As described in section 3.7.3 on page 51 we can ignore
some tokens during the construction of the index due to their weight in comparison to the
other tokens. E.g. the candidate “Alte Waibstadter Straße” will be represented only
by “Waibstadter”, because the other two tokens occur so frequently in the dictionary that
they would not be of much help to distinguish this candidate from others.

ILT FIC FED Query Time [ms]
5 5 5 570
5 5 3 566
5 3 5 199
5 3 3 126
3 5 5 10.68
3 5 3 10.58
3 3 5 3.45
3 3 3 2.09

Table 6: e effect of the features ILT, FIC and FED on the lookup time.

Aswe can see in table 6, disabling ILT absolutely destroys the performance. To seewhy this
is so, consider the most frequent token in the street dictionary, “straße”. If we randomly
choose a street, the probability that it contains the token “straße” is about 1/3. Without
ILT, any query that contains the token “straße” will return all candidates that contain this
token. Hence, if we randomly choose a candidate and query the index with this candidate,
we can expect a candidate set that contains at least 1/9 of all streets, which is almost 50000
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candidates for our data. In our experiments the actual number of candidates was even big-
ger, 67000 candidates on average. e query time drops by a factor of almost 100 when we
enable ILT. FIC gives us another boost of factor 3 and FED makes a difference only when
used in conjunction with FIC. None of these features has a noteworthy effect on thememory
requirements of the index, therefore all of them should be enabled by default.
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Figure 25: e effect of the size of the array first_edge. e red line shows the query time
with different values used in the town index, while the table in the street index
was chosen “big enough”. e street index shows the same behaviour.

Fig. 25 shows how the query time is affected by the size of the table for the residual strings.
We can see that the effect is not overly dramatic. Both the town index and the street index
show the same behaviour. If we set both indexes to 1M slots, we still get an average query
time of 4.2 ms.

3.8.4. Single Field Search

In Section 3.6 on page 44 we described two ways to perform a search from a single address
string that contains both the street and the town. Parsing the search string is a significant
complication. It is often difficult to decide which parts of the string make up the street and
which parts make up the town. Our “clever” approach is to first identify the town and then
split the string into two fields based on this guess. If the result is not convincing, we perform
an exhaustive search (see Section 3.6 on page 44).
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Query: “Straße der 17 Juli Brlin”
Correct Result: “Straße des 17. Juni, Berlin”
Our guess for the town: “An der Straß” (which is an actual town)

→ Search for “Straße der” (town), “17 Juli Brlin” (street)
→ No match
→ Exhaustive search leads to the expected result.

Example 7: In some cases it is difficult to identify which parts of the querymake up the town.

On a sample of 1000 queries with 2 errors per query, as decribed in Section 3.8.1 on
page 52, the multi-field search correctly identifies 98.8% of the addresses and takes 2.44
ms on average. e exhaustive single-field search correctly matches 98.6% of the queries
in 19.72 ms, while our “clever” approach matches 97.2% in 20.01 ms. Surprisingly it takes
longer than the naïve, exhaustive search. is suggests that the results are often not satisfac-
tory—we then fall back to the exhaustive search. Remember that a query with m tokens has
to be repeated for 2m−1 interpretations of the search string. An address string is composed
of 3.6 tokens on average, and the increase of the lookup time from 2.44 ms to 19.72 ms is
about what we expected.

Unfortunately, the described “short circuiting” is not of much use. e question remains
how we could robustly parse the query string without having to try too many combinations
and without sacrificing accuracy.

3.8.5. Searching in the Neighborhood Graph

To test the Neighborhood search (as described in Section 3.3 on page 38), we picked 50 pairs
of towns from a map of Germany. e query strings were of the form “small town near:
big town; street” and the queries have been performed both as multi-field lookups and
as single-field lookups. We did not introduce further errors into the string.

e average lookup time was 4.1ms in the multi-field search and 43.4ms in the single-field
search. As the addresses did not contain errors, each query was successful in the multi-field
search. In 6of the50 cases, however, no connection fromthe small town to the big town could
be found, despite their closeness. For instance, the query “Leingarten near: Heilbronn;
Ebertstraße” returned the result “Leingarten, Großgartach; Ebertstraße” instead
of “Leingarten, Großgartach near Heilbronn; Ebertstraße”, although the two
towns are only 7km apart. e single-field search correctly identified 49 of the 50 addresses.
Sample queries can be found in Appendix A.2 on page 67.
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4. Open Problems
e geocoder presented here has its fair share of quirks that need to be addressed. Some
of the problems are best explained with the help of an example. Ideally, the address search
should work equally well on diverse address schemes in several countries without the need
to customize it for a certain language. As an example for the adaptation to different lan-
guages, we want to look at how abbreviations are treated. e abbreviation "St." conforms
to "Sankt" in german and to "Saint" in french. We don't use language-specific substitution
tables, hence our index is not aware of the meaning of the string "St.".

Now consider the query "St. Peter-Ording", which refers to the german town Sankt
Peter-Ording. Our address search actually returns another result first, namely the town/street-
pair St. Peter, Nordring.

is suggests either that we need language-specific rules to some degree, or that we have
to develop a more sophisticated rating heuristic.

Another problem lies in the way we choose our results. If there are lots of goodmatches, it
is usually sufficient to return those with the best rating. In the case of a bad query, however,
it is difficult to decide when it becomes "too bad", i.e. when we should drop the results alto-
gether. In the end, the user should always be able to see the resemblance of the query and
the result.
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5. Conclusion & Future Work
In this work we presented an approach to the problem of fault-tolerant geocoding of postal
addresses. We implemented a fast index data structure to support quick approximate lookups
in dictionaries and developed a simple technique to trade off lookup time for space. We
showed through experiments that our index works indeed quite well on natural language
dictionaries.

e index was then used to implement a fault-tolerant geocoder that supports the correc-
tion and lookup of postal addresses within few milliseconds. To achieve accuracy and fast
query times, we applied filtering techniques based on the spatial distribution of the under-
lying data as well as on well-established methods from the domain of information retrieval.
A comparison with an existing commercial geocoder showed that our application is compet-
itive.

ere is of course room for future work on both the index data structure and the address
search. e index is fast, but its memory requirements are substantial. In our application,
the dictionaries are not too big, therefore we can afford the space. e address index for
Germany fits into ~200MB, which is quite reasonable considering the specs of today's servers
and evendesktop computers. But the question remains if there is away to significantly reduce
the space requirements without sacrificing query times. is is of interest especially when
thinking of mobile devices. e main memory of mobile phones is typically much smaller
than that of a desktop PC, and the extensive use of hashing makes our index a less then
perfect fit for mobile devices. Nonetheless, the address search could work well on mobile
devices if we used a smaller, less memory-intensive index.

An obvious modification would be to parallelize parts of the index. Many tasks are partly
or completely independent, such as edit distance computations, the generation of residual
strings etc.

For the address search, we used two indexes: A town index and a street index. is way
we could answer queries for postal addresses quickly. We accept user input in a single search
field and try to find out which part of the query makes up the town and which part makes up
the string. Parsing the search string would be much more difficult if we deciced to support
other spatial entities, such as points of interests, forests, lakes etc. It would be interesting to
see if it is sufficient to use a single index that holds all entities, i.e. streets, towns etc. en
it would be possible to allowmuch broader queries such as queries for street intersections or
points of interests (e.g. "school in city center") without the need to find the correct
assignment of parts of the string to the correct index.

e lookup times of our address index are very fast, especially when considering the com-
mon use case of an interactive search. We need only a few milliseconds to answer a query,
which is only a small fraction of the time a user needs to enter the query on a keyboard. It
should be possible to start some of the work already while the user is still typing, maybe it
would even be possible to show suggestions based on the incomplete input.

e rating heuristic that is used in our address search is quite simple and easy to calculate.
But of course it is not competitive with a human operator in terms of the accuracy withwhich
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results are matched to the query string. Humans who are accustomed to a language and a
local address scheme are indeed hard to beat: ey have background knowledge about the
spatial distribution of towns, phonetic idiosyncrasies of their language, abbreviations and
naming conventions etc. It would therefore be interesting if there is a small subset of simple
rules that captures enough of this background knowledge to give comparable results.
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A. Sample Queries

A.1. Randomly Distorted Queries
No errors

Holderstraße;Lüntorf
Sellenahne;Heckershausen
Bösings Kamp;Coesfeld
Beim Schlössle;Amtzell
Gewerbegebiet an der Morgensonne;Geyer
…

1 Error

holderstraß;lüntorf
qellenahne;heckershausen
bosings kamp;coesfeld
ebim schlössle;amtzell
gewerbegebiet an der morfensonne;geyer
…

2 Errors

holdestraße;püntorf
sellneahne;heckershqusen
bödings kamp;clesfeld
beim schlösle;amtzelk
gewerbegebiet an der morgensone;geyewr
…

3 Errors

holdersdstraße;lpntorf
ssellenane;heckersausen
böings kamo;ccoesfeld
beim schhlösle;amtell
gewebregefiet an der morgensonne;geaer
…

4 Errors

holderrrstraße;lünntorw
sellenwanhe;hreckershhausen
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böslings amp;fcoesffeld
beiim schlösle;amtozll
gewerbegebiet an der morgensojmnne;geyro
…

5 Errors

holertraeß;lüntoofr
eselldnahne;hecekrshauken
bösingw kuanp;coeesefld
bveim shclösslee;amtzeel
gewerbogerbiet an der morgenslonne;gbeyerr
…

A.2. Logged Queries
Exact Search

passau;neue rieser str.
leipzig-thekla;theklaer-str.
verl kaunitz;fürstenstraße.-
berlin mitte;schumannstraße
pforzheim;lukas-moser-str.
marburg;körnerstraße
simmertal;
remscheid;
gelsenkirchen;theodor otte strasse
markt schwaben;
…

Partially Exact Search

hamburg;sieldeich -
bonn;theaterstr.
blumberg;elisenauer str
kattenes;moselufer
schwabach;grünewaldstraße
köln;mannsfelder str
bochum;am chursbusch
hamburg;wrangelstr.
berlin;dörpfeldstr.
herzebrock;möhlerstraße
…
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”High”

dortmund;walther-kohlmann-sraße
karlsruhe;momberstr.
villingen schwellingen;
hasbergen an;osnabrücker straße
frankfurt;lyonerstr.
esslingen am neckar;berkheimerstr.
hamburg lohbrügge;agnes-wolffson-straße
hannover;hildesheimerstr
schneeberg;teich-straße
schondorf;uttingerstr.
…

”Medium”

bernburg saale;
rednitzhembach;königsplatz
burgwedel großburgwedel;furberst
damp;yachthafen
aachen;philippe nehri weg
eutin;am hauptbahnhof
langförden;in der praterei
nürnberg;hinterer floßanger
laustiz;
damp;aqua tropicana
…

”Low”

bad homburg;bad homburg
oschsenhausen;kolpingstr.
mülheim an der ruhr;nollendorfstraße
hÃ¼nstetten;am sÃ¼dhang
travemünde;helling
klettwitz;lausitzallee
berlin;sigfried str höchenschonchausen
wupperthal;wupperthal hauptbahnhof
düren;a
bonn;auf der minne
…
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Neighborhood Search

Köditz bei: Hof;Birkenweg
Ötigheim bei: Bietigheim;Kreuzstraße
Wörth bei: Karlsruhe;Mercedes Benz
Sindelfingen bei: Stuttgart;Maichinger Str
Aarbergen bei: Wiesbaden;Untere Weinbergstraße
Dülmen bei: Münster;Dammweg
Duderstadt bei: Göttingen;Am Stadtberg
Teistungen bei: Duderstadt;Bergstraße
Sinsheim bei: Heidelberg;Longue-Straße
Parchim bei: Schwerin;Südring
…
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